fluent帮助文件的三大控制方程,连续性方程+NS方程+能量方程公式。

fluent帮助文件的三大控制方程,连续性方程+NS方程+能量方程公式。

fluent的三大控制方程

ChatGPT 说:

Fluent 计算流体力学 (CFD) 软件的核心计算基于

### ANSYS Fluent 中的主要控制方程 #### 连续性方程 连续性方程表达的是质量守恒原理,在不可压缩流体的情况下,该方程表示单位时间内流入系统的质量等于流出的质量加上系统内增加的质量。对于三维稳态流动,其形式如下: \[ \nabla \cdot \vec{V} = 0 \] 其中 $\nabla$ 是哈密顿算子,$\vec{V}$ 表示速度矢量[^2]。 #### 动量方程 (Navier-Stokes 方程) 动量方程描述了粘性流体内各部分之间以及流体与固体壁面间的相互作用力和加速度的关系。此方程基于牛顿第二定律推导而来,并考虑到了压力梯度、粘滞应力和其他外力的影响。在笛卡尔坐标系下的一般形式可以写作: ```matlab ρ(∂u/∂t + u·∇)u = -∇p + μ∇²u + f ``` 这里 $ρ$ 是密度;$u=(u,v,w)$ 分别代表沿$方向的速度分量;$ 表示静压强;$μ$ 则为动力粘度系数;而$f$ 可能包含了重力或其他体积力的作用[^1]。 #### 能量方程 能量方程反映了热力学第一定律应用于流体力学领域的情况——即总能量的变化率等于做功速率加上热量传递速率。它通常用来追踪温度场随时间和位置变化的趋势,从而帮助预测诸如传热效率等问题。具体而言, \[ \rho c_p (\frac{\partial T}{\partial t}+\vec V . ∇T)=k∇^2T+S_T \] 此处$c_p$指比热容;$ 温度; $ 包含源项如化学反应产生的额外加热效应等。 这些方程构成了FLUENT软件内部用于数值求解的基础框架,通过适当的选择离散化方案来近似解决实际工程问题中的复杂几何形状下的流体行为分析任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值