流体力学控制方程的总结

本文详细总结了粘性流动的纳维-斯托克斯方程和无粘流欧拉方程,包括连续性、动量和能量方程,并探讨了适合计算流体力学(CFD)的控制方程,强调了守恒形式在算法设计和计算中的重要性,以及时间相关算法在求解非定常流动问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、粘性流动的纳维-斯托克斯(Navier-Stokes)方程

       粘性流动是包括摩擦、热传导和质量扩散等输运现象的流动,这些输运现象是耗散性的,它们使流体的熵增加。但是质量扩散只有当流动中不同化学组分之间存在浓度梯度时才发生。目前没有考虑质量扩散。

1.连续性方程

守恒形式:

2.动量方程

守恒形式:

X方向:

Y方向:

Z方向:

3.能量方程

守恒形式

二、无粘流欧拉(Euler)方程

无粘流的定义是忽略了耗散、粘性输运、质量扩散以及热传导的流动。也就是将上一节列出的方程简单地去掉其中所有包含摩擦和热传导的项就得到了无粘流非常。

1.连续性方程

守恒形式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值