import pandas as pd
import numpy as np
import functools
import datetime #用来计算日期差的包
import orangecontrib.associate.fpgrowth as oaf #进行关联规则分析的包
import time
from collections import Counter
dataSet_in=pd.read_excel('C:/Users/zhangpeng/Desktop/拒贷页分析.xlsx',header=0)
dataSet_in['mult_loan']=pd.cut(dataSet_in['mult_loan'],[-1,0.9,3,10,20,40,200],labels=['多头0家','多头1-5家','多头5-10家','多头11-20家','多头21-40家','多头40家以上'])
dataSet_in['mult_loan']=dataSet_in['mult_loan'].where(dataSet_in['mult_loan'].notna(),'无多头信息')
dataSet_in['mult_click']=pd.cut(dataSet_in['mult_click'],[0.9,1.1,4,10,20,120],labels=['1次点击','2-4次','5-10次','10-20次','20次以上'])
dataSet_in['mult_click']=dataSet_in['mult_click'].where(dataSet_in['mult_click'].notna(),'无点击')
dataSet_in.loc[dataSet_in['
fpgrowth关联分析
最新推荐文章于 2024-08-16 19:02:32 发布
本文详细介绍了FPGrowth算法,一种用于大规模数据集的关联规则挖掘方法。通过利用频繁项集的结构来避免创建候选项集,FPGrowth显著提高了效率。我们探讨了算法的原理、步骤,并通过实例展示了如何使用该算法找出商品购买行为中的关联规则。最后,讨论了FPGrowth在电商、市场篮子分析等领域的实际应用。
摘要由CSDN通过智能技术生成