【啊范的分析报告_1】
前言
在一些营销场景下,对不同客户给予相同的对待或策略有时不太合适,所以我们根据用户数据,分析用户行为和消费倾向,并打上相应的标签应用于不同厂家。用有限的公司资源优先服务于公司最重要的客户,客户与我们的粘性将会更高,并与双方建立忠诚的合作关系。
在第一阶段,我们基于RFM模型做用户消费分析,并定义一些指标。
- 最近一次消费(Recency)
- 消费频率(Frequency)
- 消费金额(Monetary)
数据集
- 我们选择2019/03/03 到 2020/03/01一整年53周的数据作为我们的数据分析数据集。
- 数据集包含总共10000个付费用户,总销售额¥1000 M。 (数据已脱敏)
- 我们使用GMV作为销售分析指标,退货部分将在后续另做分析。
数据的选取我们通过HIVE在数据库中选取,其中稍难的地方在于 最近一次购买——需要用到窗口函数 over (partition by xx) 的方法,疑问的同学可以去搜索下,后续我也会出SQL的一些常用方法和心得体会。
最近一次消费(Recency)
我们认为用户的最近一次消费行为离今日越近,他当前的活跃度将会更高,价值也会更高。