用户画像无头绪?手把手教你RFM模型

本文通过RFM模型分析用户消费行为,详细解释最近一次消费(Recency)、消费频率(Frequency)和消费金额(Monetary)的含义与分组策略。数据表明,近期消费频繁且金额高的用户具有高价值。应用RFM模型可以为营销活动和用户召回提供依据,揭示用户行为模式并指导业务决策。
摘要由CSDN通过智能技术生成

【啊范的分析报告_1】

用户画像无头绪?手把手教你RFM模型

 

前言

在一些营销场景下,对不同客户给予相同的对待或策略有时不太合适,所以我们根据用户数据,分析用户行为和消费倾向,并打上相应的标签应用于不同厂家。用有限的公司资源优先服务于公司最重要的客户,客户与我们的粘性将会更高,并与双方建立忠诚的合作关系。

 

在第一阶段,我们基于RFM模型做用户消费分析,并定义一些指标。

  • 最近一次消费(Recency)
  • 消费频率(Frequency)
  • 消费金额(Monetary)

数据集

  1. 我们选择2019/03/03 到 2020/03/01一整年53周的数据作为我们的数据分析数据集。
  2. 数据集包含总共10000个付费用户,总销售额¥1000 M。 (数据已脱敏)
  3. 我们使用GMV作为销售分析指标,退货部分将在后续另做分析。

数据的选取我们通过HIVE在数据库中选取,其中稍难的地方在于 最近一次购买——需要用到窗口函数 over (partition by xx) 的方法,疑问的同学可以去搜索下,后续我也会出SQL的一些常用方法和心得体会。

最近一次消费(Recency)

我们认为用户的最近一次消费行为离今日越近,他当前的活跃度将会更高,价值也会更高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值