三大中值定理及简单例题

一 罗尔定理

1.1 定义与证明

image-20210317231122134

1.2 几何意义

image-20210317233014020

二 拉格朗日中值

2.1 定义与证明

定义

image-20210927093823964

证明:

作 辅 助 线 L A B : y − f ( a ) = f ( b ) − f ( a ) b − a ( x − a ) 即   y = f ( a ) + f ( b ) − f ( a ) b − a ( x − a ) 令   g ( x ) = f ( x ) − f ( a ) − f ( b ) − f ( a ) b − a ( x − a ) 则   g ( a ) = 0 = g ( b ) 根 据 罗 尔 定 理 , 存 在 δ , 使 得 g ′ ( δ ) = 0 即   f ′ ( δ ) − f ( b ) − f ( a ) b − a = 0 故   f ′ ( δ ) = f ( b ) − f ( a ) b − a \begin{aligned} & 作辅助线 L_{AB}:y-f(a) = \frac{f(b)-f(a)}{b-a}(x-a) \\ & 即 \ y = f(a) + \frac{f(b)-f(a)}{b-a}(x-a)\\ & 令 \ g(x) = f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a) \\ & 则 \ g(a) = 0 = g(b) \\ & 根据罗尔定理,存在 \delta,使得g'(\delta) = 0 \\ & 即 \ f'(\delta) - \frac{f(b)-f(a)}{b-a} = 0 \\ &故 \ f'(\delta) = \frac{f(b)-f(a)}{b-a} \end{aligned} 线LAByf(a)=baf(b)f(a)(xa) y=f(a)+baf(b)f(a)(xa) g(x)=f(x)f(a)baf(b)f(a)(xa) g(a)=0=g(b)δ,使g(δ)=0 f(δ)baf(b)f(a)=0 f(δ)=baf(b)f(a)
其他变形

image-20210317232139344

可以看出罗尔定理是拉格朗日定理的特殊形式 f(b)=f(a)时候分子为0

个人理解的另一种看法:虽然f(a)!=f(b),但是可以通过坐标转换使得f(a)=f(b),这样就又变为了罗尔定理了。

2.2 几何意义

image-20210317233059918

三 柯西中值定理

3.1 定义与证明

定义

image-20210317232515049

g’(x)!=0保证了g(b)-g(a)!=0,从而保证了分子!=0

证明

作辅助函数类似证拉格朗日

可以看出当g(x)=x时候,为拉格朗日中值定理

3.2 几何意义

​ 曲线上存在一点其切线平行于由两点 (f(a),g(a)) 和 (f(b),g(b)) 所连接的直线。但柯西定理不能表明在任何情况下这种切线都存在,因为可能存在一些c值使 f′(c) = g′(c) = 0

image-20210317233434396

四 泰勒公式

也称泰勒定理

4.1 定义

image-20210927100556296

两种余项表达方式

皮亚诺型

image-20210927100606573

拉格朗日型

image-20210927100618362

推广

当f在a处n阶可导(注意与定理为n+1阶可导),把余项改成皮亚诺型即可

image-20210927104857905

4.2 麦克劳林

即当x0=0时候的泰勒展开
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ( 2 ) ( 0 ) 2 ! x 2 + . . . + f ( n ) ( 0 ) n ! x n + R n ( x ) f(x) = f(0)+f'(0)x + \frac{f^{(2)}(0)}{2!}x^{2} + ... + \frac{f^{(n)}(0)}{n!}x^{n} + R_n(x) f(x)=f(0)+f(0)x+2!f(2)(0)x2+...+n!f(n)(0)xn+Rn(x)
常用公式

image-20210927101350302

补充几个

image-20210929102742040

记忆:

ex最简单,e0 = 1,e(n) = 1;

sin 0 = 0, sin’0 x = cos 0 x = x,再次求导变回sin 0 = 0,因此是奇数项

cos 0 = 1,cos’0 x = sin 0 x= 0,再次求导变回cos 0 = 1,因此是偶数项,和恰好相反

三角函数特点:三阶

五 积分中值定理

积分第一中值定理

设f:[a,b]->R为一连续函数,g:[a,b]->R要求g(x)是可积函数且在积分区间不变号,那么存在一点ε∈[a,b]使得
∫ a b f ( x ) g ( x ) d x = f ( ε ) ∫ a b g ( x ) d x \int_{a}^{b}f(x)g(x)dx = f(ε)\int_{a}^{b}g(x)dx abf(x)g(x)dx=f(ε)abg(x)dx
证明

image-20210930104503836

特别地,当g(x)=1时候,公式如下:
∫ a b f ( x ) d x = f ( ε ) ( b − a ) \int_{a}^{b}f(x)dx = f(ε)(b-a) abf(x)dx=f(ε)(ba)
其中,a、b、ε满足:a <= ε <= b。

它也可以由拉格朗日中值定理推出:
f ( ε ) = F ′ ( ε ) = F ( b ) − F ( a ) b − a = ∫ a b f ( x ) d x b − a f(ε)=F'(ε) = \frac{F(b)-F(a)}{b-a} = \frac{\int_{a}^{b}f(x)dx}{b-a} f(ε)=F(ε)=

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值