三大中值定理及简单例题

一 罗尔定理

1.1 定义与证明

image-20210317231122134

1.2 几何意义

image-20210317233014020

二 拉格朗日中值

2.1 定义与证明

定义

image-20210927093823964

证明:

作 辅 助 线 L A B : y − f ( a ) = f ( b ) − f ( a ) b − a ( x − a ) 即   y = f ( a ) + f ( b ) − f ( a ) b − a ( x − a ) 令   g ( x ) = f ( x ) − f ( a ) − f ( b ) − f ( a ) b − a ( x − a ) 则   g ( a ) = 0 = g ( b ) 根 据 罗 尔 定 理 , 存 在 δ , 使 得 g ′ ( δ ) = 0 即   f ′ ( δ ) − f ( b ) − f ( a ) b − a = 0 故   f ′ ( δ ) = f ( b ) − f ( a ) b − a \begin{aligned} & 作辅助线 L_{AB}:y-f(a) = \frac{f(b)-f(a)}{b-a}(x-a) \\ & 即 \ y = f(a) + \frac{f(b)-f(a)}{b-a}(x-a)\\ & 令 \ g(x) = f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a) \\ & 则 \ g(a) = 0 = g(b) \\ & 根据罗尔定理,存在 \delta,使得g'(\delta) = 0 \\ & 即 \ f'(\delta) - \frac{f(b)-f(a)}{b-a} = 0 \\ &故 \ f'(\delta) = \frac{f(b)-f(a)}{b-a} \end{aligned} 线LAByf(a)=baf(b)f(a)(xa) y=f(a)+baf(b)f(a)(xa) g(x)=f(x)f(a)baf(b)f(a)(xa) g(a)=0=g(b)δ,使g(δ)=0 f(δ)baf(b)f(a)=0 f(δ)=baf(b)f(a)
其他变形

image-20210317232139344

可以看出罗尔定理是拉格朗日定理的特殊形式 f(b)=f(a)时候分子为0

个人理解的另一种看法:虽然f(a)!=f(b),但是可以通过坐标转换使得f(a)=f(b),这样就又变为了罗尔定理了。

2.2 几何意义

image-20210317233059918

三 柯西中值定理

3.1 定义与证明

定义

image-20210317232515049

g’(x)!=0保证了g(b)-g(a)!=0,从而保证了分子!=0

证明

作辅助函数类似证拉格朗日

可以看出当g(x)=x时候,为拉格朗日中值定理

3.2 几何意义

​ 曲线上存在一点其切线平行于由两点 (f(a),g(a)) 和 (f(b),g(b)) 所连接的直线。但柯西定理不能表明在任何情况下这种切线都存在,因为可能存在一些c值使 f′(c) = g′(c) = 0

image-20210317233434396

四 泰勒公式

也称泰勒定理

4.1 定义

image-20210927100556296

两种余项表达方式

皮亚诺型

image-20210927100606573

拉格朗日型

image-20210927100618362

推广

当f在a处n阶可导(注意与定理为n+1阶可导),把余项改成皮亚诺型即可

image-20210927104857905

4.2 麦克劳林

即当x0=0时候的泰勒展开
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ( 2 ) ( 0 ) 2 ! x 2 + . . . + f ( n ) ( 0 ) n ! x n + R n ( x ) f(x) = f(0)+f'(0)x + \frac{f^{(2)}(0)}{2!}x^{2} + ... + \frac{f^{(n)}(0)}{n!}x^{n} + R_n(x) f(x)=f(0)+f(0)x+2!f(2)(0)x2+...+n!f(n)(0)xn+Rn(x)
常用公式

image-20210927101350302

补充几个

image-20210929102742040

记忆:

ex最简单,e0 = 1,e(n) = 1;

sin 0 = 0, sin’0 x = cos 0 x = x,再次求导变回sin 0 = 0,因此是奇数项

cos 0 = 1,cos’0 x = sin 0 x= 0,再次求导变回cos 0 = 1,因此是偶数项,和恰好相反

三角函数特点:三阶

五 积分中值定理

积分第一中值定理

设f:[a,b]->R为一连续函数,g:[a,b]->R要求g(x)是可积函数且在积分区间不变号,那么存在一点ε∈[a,b]使得
∫ a b f ( x ) g ( x ) d x = f ( ε ) ∫ a b g ( x ) d x \int_{a}^{b}f(x)g(x)dx = f(ε)\int_{a}^{b}g(x)dx abf(x)g(x)dx=f(ε)abg(x)dx
证明

image-20210930104503836

特别地,当g(x)=1时候,公式如下:
∫ a b f ( x ) d x = f ( ε ) ( b − a ) \int_{a}^{b}f(x)dx = f(ε)(b-a) abf(x)dx=f(ε)(ba)
其中,a、b、ε满足:a <= ε <= b。

它也可以由拉格朗日中值定理推出:
f ( ε ) = F ′ ( ε ) = F ( b ) − F ( a ) b − a = ∫ a b f ( x ) d x b − a f(ε)=F'(ε) = \frac{F(b)-F(a)}{b-a} = \frac{\int_{a}^{b}f(x)dx}{b-a} f(ε)=F(ε)=baF(b)F(a)=baabf(x)dx
几何意义:

image-20210930104548138

积分第二中值定理

与第一中值定理互相独立,是更加精细的积分中值定理

image-20210930104624622

几何意义

image-20210930104648201

应用: 去除积分号或者使得复杂被积函数化为相对简单的被积函数,简化问题。

六 中值定理的推广

6.1 导数零点定理

有点像罗尔定理,罗尔定理通过限制f(a)=f(b)得出最值在[a,b]内;

此处通过一阶导数f’得出最值在(a,b)内;

若我们得知最值在(a,b)且在(a,b)内函数可导,则一样可以得出f’(δ)=0的结论

image-20210927104618799

6.2 导数的介值定理

利用导数零点定理

image-20210927105450933

七 基础例题

回顾四大定理

image-20210927123547953

7.1 证n阶导=0

手法:

一阶导f’=0,一次罗尔,找f(a)=f(b)

二阶导f’’=0,两次罗尔,找f(a)=f(b)=f©,f’Δ= f’δ = 0

  1. image-20210317234337644

  2. 证f’’ = 0 找三点相等->两次罗尔 注意该题目是导数相乘大于0image-20210318112456662

7.2 仅一个中值δ

思想:构造辅助函数使得待证式子为某函数的导数,从而使用中值定理

特征:仅有δ,差一阶,两项

还原法

f ′ f = ( ln ⁡ f ) ′ f ′ ′ f ′ = ( ln ⁡ f ′ ) ′ f ( x ) = ∫ 0 x f ( t ) d t ( ln ⁡ ∫ 1 x f ( t ) d t ) ′ = f ( x ) ∫ 1 x f ( t ) d t 构 造 辅 助 函 数 类 似   φ ( x ) = f ( x ) e ∫ 0 x f ( t ) d t , 则 φ ′ ( x ) = g ( x ) [ 待 证 函 数 ] , 其 中 g ( x ) ! = 0 即 [ 待 证 函 数 ] = = 0 \frac{f'}{f} = (\ln f)' \quad \frac{f''}{f'} = (\ln f')' \quad f(x) = \int^x_0f(t)dt \quad (\ln \int^x_1f(t)dt)' = \frac{f(x)}{\int^x_1f(t)dt}\\ 构造辅助函数类似 \ \varphi(x) = f(x)e^{\int^x_0f(t)dt},则 \varphi'(x) = g(x)[待证函数],其中g(x)!=0即[待证函数]==0 ff=(lnf)ff=(lnf)f(x)=0xf(t)dt(ln1xf(t)dt)=1xf(t)dtf(x) φ(x)=f(x)e0xf(t)dtφ(x)=g(x)[],g(x)!=0[]==0

具体实例:
f ( x ) ′ f ( x ) + 2 = 0 还 原 得 ( ln ⁡ f ) ′ + ( 2 x ) ′ = ( ln ⁡ f e 2 x ) ′ = 0 辅 助 函 数 φ ( x ) = f e 2 x , 则 φ ′ ( x ) = f ′ e 2 x + f e 2 x 2 = e 2 x ( f ′ + 2 f ) \frac{f(x)'}{f(x)} + 2 = 0 \\ 还原得 (\ln f)'+(2x)' = (\ln f e^{2x})'=0 \\ 辅助函数 \varphi(x) = fe^{2x},则 \varphi'(x)=f'e^{2x}+fe^{2x}2=e^{2x}(f'+2f) f(x)f(x)+2=0(lnf)+(2x)=(lnfe2x)=0φ(x)=fe2x,φ(x)=fe2x+fe2x2=e2x(f+2f)

  1. 除以xf(x)

image-20210318114354793

  1. 拼凑f’’(x)/f(x)从而辅助函数为ln{f’(x)}

image-20210318120319410

分组构造

特征:两边近似相同(第一个式子类似第二个式子的导数)
1.   f ′ + k f = f ′ f + k = ( ln ⁡ f ) ′ + ( ln ⁡ e k x ) ′ = ln ⁡ ( e k x f ) ′ , 辅 助 函 数 φ ( x ) = e k x f ( x ) 2.   f ′ − k f = ( ln ⁡ e − k x f ) ′ , 辅 助 函 数 φ ( x ) = e − k x f ( x ) 3.   x f ′ + k f = x k f ′ + x k − 1 k f = x k − 1 ( x f ′ + k f ) , 辅 助 函 数 φ ( x ) = x k f ( x ) 4.   f ′ ′ g 的 两 种 思 路 : ( f ′ g ) ′ = f ′ ′ g + f ′ g ′ ; ( f ′ g ) ′ = f ′ ′ g − f ′ g ′ g 2 5.   f ′ ′ − f = ( f ′ ′ − f ′ ) + ( f ′ − f ) = ( f ′ − f ) ′ + ( f ′ − f ) = ( f ′ + f ) ′ − ( f ′ + f ) = g ′ ± g , 辅 助 函 数 φ ( x ) = e ± x g 6.   f ′ ′ + f ′ − k = ( f ′ − k ) ′ + ( f ′ − k ) = g ′ + g , 辅 助 函 数 φ ( x ) = e x g ( x ) , 同 理 f ′ + f − k 7.   f ′ − f + k x − k = ( f − k x ) ′ − ( f − k x ) = g ′ + g , 辅 助 函 数 φ ( x ) = e − x g ( x ) \begin{aligned} & 1.\ f' + kf = \frac{f'}{f} + k = (\ln f)' + (\ln e^{kx})' =\ln (e^{kx}f)',辅助函数\varphi(x)=e^{kx}f(x) \\ & 2.\ f' - kf = (\ln e^{-kx}f)',辅助函数\varphi(x)=e^{-kx}f(x) \\ & 3.\ xf' + kf = x^{k}f' + x^{k-1}kf = x^{k-1}(xf'+kf),辅助函数\varphi(x)=x^kf(x) \\ & 4.\ f''g 的两种思路:(f'g)'=f''g+f'g'; (\frac{f'}{g})' = \frac{f''g-f'g'}{g^2} \\ & 5.\ f''-f = (f''-f')+(f'-f) = (f'-f)'+(f'-f) = (f'+f)'- (f'+f) = g' \pm g,辅助函数\varphi(x)=e^{\pm x}g\\ & 6.\ f''+ f'- k = (f'-k)' + (f'-k) = g' + g,辅助函数\varphi(x)=e^{x}g(x),同理f'+f-k \\ & 7. \ f'-f + kx - k = (f-kx)' - (f-kx) = g'+g,辅助函数\varphi(x)=e^{-x}g(x) \end{aligned} 1. f+kf=ff+k=(lnf)+(lnekx)=ln(ekxf),φ(x)=ekxf(x)2. fkf=(lnekxf),φ(x)=ekxf(x)3. xf+kf=xkf+xk1kf=xk1(xf+kf),φ(x)=xkf(x)4. fg(fg)=fg+fg;(gf)=g2fgfg5. ff=(ff)+(ff)=(ff)+(ff)=(f+f)(f+f)=g±g,φ(x)=e±xg6. f+fk=(fk)+(fk)=g+g,φ(x)=exg(x),f+fk7. ff+kxk=(fkx)(fkx)=g+g,φ(x)=exg(x)
总结

待证转换辅助函数
f’+(-)kf(ln(e+(-)kxf)’e+(-)kxf(x)
xf’+kfxk-1(xf’+kf)xkf(x)
f’’-f(f’-f)’ + (f’-f) = (f’+f)’ - (f’+f) = g’+(-)ge+(-)x[f’(x)-(+)f]
f’’ +f’ - k(f’ - k)’ + (f’-k) = g’ + gex[f’(x)-k]
f’ - f +kx - k(f-kx)’ - (f-kx) = g’ - ge-x[f(x)-kx]
  1. f’ + kf -kx - 1 = (f-x)’ + k(f-x)

image-20210318191930047

  1. 辅助函数的综合运用

image-20210318194814500

凑微分

特征:导数差两阶—无法普通还原

步骤:去分母——移项——整理成g(x)=0——构造辅助函数φ(x),使得φ’(x) = g(x)
1.   f ′ ′ g − f g ′ ′ = ( f ′ g − f g ′ ) ′ , 辅 助 函 数 φ ( x ) = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) 2.   f ′ g + g ′ f = ( f g ) ′ , 辅 助 函 数 φ ( x ) = f ( x ) g ( x ) \begin{aligned} & 1.\ f''g - fg'' = (f'g-fg')' ,辅助函数\varphi(x)=f'(x)g(x)-f(x)g'(x)\\ & 2.\ f'g+g'f = (fg)',辅助函数\varphi(x) = f(x)g(x) \\ \end{aligned} 1. fgfg=(fgfg)φ(x)=f(x)g(x)f(x)g(x)2. fg+gf=(fg),φ(x)=f(x)g(x)

image-20210928135010003

含积分项

积分中值定理
带定积分项

image-20210930103605673

还原法
1 x − 1 + f ( x ) ∫ 0 x f ( t ) d t = 0 [ ln ⁡ ( x − 1 ) ] ′ + [ ln ⁡ ∫ 0 x f ( t ) d t ] ′ = 0 φ ( x ) = ( x − 1 ) ln ⁡ ∫ 0 x f ( t ) d t = x ln ⁡ ∫ 0 x f ( t ) d t − ln ⁡ ∫ 0 x f ( t ) d t \frac{1}{x-1} + \frac{f(x)}{\int^x_0f(t)dt} = 0 \\ [\ln(x-1)]' + \bigg[\ln \int^x_0f(t)dt \bigg]' = 0 \\ \varphi(x) = (x-1)\ln \int^x_0f(t)dt = x\ln \int^x_0f(t)dt-\ln \int^x_0f(t)dt x11+0xf(t)dtf(x)=0[ln(x1)]+[ln0xf(t)dt]=0φ(x)=(x1)ln0xf(t)dt=xln0xf(t)dtln0xf(t)dt

7.3 含中值δ和a,b

a,b与δ可分离

还原法
  1. 还原法+罗尔中值定理

image-20210318200539318

中值定理法

拉 格 朗 日   f ( b ) − f ( a ) b − a = f ′ ( δ ) 柯 西 中 值   f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( δ ) g ′ ( δ ) \begin{aligned} & 拉格朗日 \ \frac{f(b)-f(a)}{b-a} = f'(\delta) \\ & 柯西中值 \ \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\delta)}{g'(\delta)} \\ \end{aligned}  baf(b)f(a)=f(δ)西 g(b)g(a)f(b)f(a)=g(δ)f(δ)

image-20210318202000397

a,b与δ不可分离

凑微分

image-20210403153343207

  1. 去分母移项再还原

image-20210403153413518

7.4 两个或以上δ

仅含中值

image-20210318210753695

image-20210318210936332

中值复杂度不同

提取复杂中项到同一个等式—还原法

根据情况选择柯西或者拉格朗日中值定理

若需使用拉格朗日,则式子可能会出现a+b,a-b,a2-b2

image-20210318212014978

image-20210318212208227

image-20210318233847291

中值对应项相同

对应项归结到一起,然后使用还原法

  1. image-20210319142200085

7.5 关于θ的问题

三种情形s
0 < θ < 1 拉 格 朗 日 f ( b ) − f ( a ) = f ′ ( a + θ ( b − a ) ) ( b − a ) 0 < θ < 1 泰 勒 公 式 f ( x ) = P n ( x ) + f ( n + 1 ) [ x 0 + θ ( x − x 0 ) ] ( n + 1 ) ! ( x − x 0 ) ( n + 1 ) 0 ≤ θ ≤ 1 积 分 中 值 ∫ a b f ( x ) d x = f ( δ ) ( b − a ) = f ( [ a + θ ( b − a ) ] ) ( b − a ) \begin{aligned} & 0 < \theta < 1 \quad 拉格朗日 \quad f(b) - f(a) = f'(a+\theta(b-a))(b-a) \\ & 0 < \theta < 1 \quad 泰勒公式 \quad f(x) = P_n(x) + \frac{f^{(n+1)}[x_0+\theta(x-x_0)]}{(n+1)!}(x-x_0)^{(n+1)} \\ & 0 \le \theta \le 1 \quad 积分中值 \quad \int ^b_af(x)dx = f(\delta)(b-a) = f([a+\theta(b-a)])(b-a) \end{aligned} 0<θ<1f(b)f(a)=f(a+θ(ba))(ba)0<θ<1f(x)=Pn(x)+(n+1)!f(n+1)[x0+θ(xx0)](xx0)(n+1)0θ1abf(x)dx=f(δ)(ba)=f([a+θ(ba)])(ba)

  1. 泰勒公式

image-20210929095047719

7.6 L的两种惯性思维

image-20210319142415598

  1. 出现f(b)-f(a)

image-20210929100413475

  1. 出现f(a),f(b),f©

image-20210929102005086

7.7 泰勒定理常见证明题

image-20210929102452845

  1. 泰勒展开+最值+介值

image-20210930094158585

八. 接力题典

8.1 入门

image-20210404200555990

  1. 作图也可以解此题

image-20210405165743676

8.2 基础

  1. 中值+可分离a,b ----还原法

image-20210930105924256

image-20210930165631065

易错点
∣ f ′ ( x ) ∣ < M , 则 − M < f ′ ( x ) < M 若 c > 0 , 则 c M > − c f ′ ( δ ) > − c M , 若 − f ( 0 ) = c f ′ ( δ ) , 事 实 上 ∣ f ( 0 ) ∣ = c ∣ f ′ ( δ ) ∣ < c M ( c > 0 ) 易 错 点 为 − f ( 0 ) = c f ′ ( δ ) , 则 − f ( 0 ) = c f ′ ( δ ) < c M , f ( 0 ) > − c M , ∣ f ( 0 ) ∣ > c M 两 处 错 误 , 1. 不 等 式 漏 了 左 边 − c M < c f ′ ( δ ) < c M ; 2. f ( 0 ) > − c M → ∣ f ( 0 ) ∣ > 0 |f'(x)| < M,则-M<f'(x)<M \\ 若c>0,则cM > -cf'(\delta)>-cM, \\ 若-f(0)=cf'(\delta),事实上|f(0)|=c|f'(\delta)|<cM \quad (c>0)\\ 易错点为-f(0) = cf'(\delta),则-f(0)=cf'(\delta)<cM,f(0)>-cM,|f(0)|>cM \\ 两处错误,1.不等式漏了左边-cM<cf'(\delta)<cM;\quad 2.f(0)>-cM \rightarrow|f(0)|>0 f(x)<M,M<f(x)<Mc>0,cM>cf(δ)>cM,f(0)=cf(δ),f(0)=cf(δ)<cM(c>0)f(0)=cf(δ),f(0)=cf(δ)<cM,f(0)>cM,f(0)>cM1.cM<cf(δ)<cM;2.f(0)>cMf(0)>0

  1. 泰勒定理
  • 15
    点赞
  • 95
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值