文章目录
一 罗尔定理
1.1 定义与证明
1.2 几何意义
二 拉格朗日中值
2.1 定义与证明
定义
证明:
作 辅 助 线 L A B : y − f ( a ) = f ( b ) − f ( a ) b − a ( x − a ) 即 y = f ( a ) + f ( b ) − f ( a ) b − a ( x − a ) 令 g ( x ) = f ( x ) − f ( a ) − f ( b ) − f ( a ) b − a ( x − a ) 则 g ( a ) = 0 = g ( b ) 根 据 罗 尔 定 理 , 存 在 δ , 使 得 g ′ ( δ ) = 0 即 f ′ ( δ ) − f ( b ) − f ( a ) b − a = 0 故 f ′ ( δ ) = f ( b ) − f ( a ) b − a \begin{aligned} & 作辅助线 L_{AB}:y-f(a) = \frac{f(b)-f(a)}{b-a}(x-a) \\ & 即 \ y = f(a) + \frac{f(b)-f(a)}{b-a}(x-a)\\ & 令 \ g(x) = f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a) \\ & 则 \ g(a) = 0 = g(b) \\ & 根据罗尔定理,存在 \delta,使得g'(\delta) = 0 \\ & 即 \ f'(\delta) - \frac{f(b)-f(a)}{b-a} = 0 \\ &故 \ f'(\delta) = \frac{f(b)-f(a)}{b-a} \end{aligned} 作辅助线LAB:y−f(a)=b−af(b)−f(a)(x−a)即 y=f(a)+b−af(b)−f(a)(x−a)令 g(x)=f(x)−f(a)−b−af(b)−f(a)(x−a)则 g(a)=0=g(b)根据罗尔定理,存在δ,使得g′(δ)=0即 f′(δ)−b−af(b)−f(a)=0故 f′(δ)=b−af(b)−f(a)
其他变形
可以看出罗尔定理是拉格朗日定理的特殊形式 f(b)=f(a)时候分子为0
个人理解的另一种看法:虽然f(a)!=f(b),但是可以通过坐标转换使得f(a)=f(b),这样就又变为了罗尔定理了。
2.2 几何意义
三 柯西中值定理
3.1 定义与证明
定义
g’(x)!=0保证了g(b)-g(a)!=0,从而保证了分子!=0
证明
作辅助函数类似证拉格朗日
可以看出当g(x)=x时候,为拉格朗日中值定理
3.2 几何意义
曲线上存在一点其切线平行于由两点 (f(a),g(a)) 和 (f(b),g(b)) 所连接的直线。但柯西定理不能表明在任何情况下这种切线都存在,因为可能存在一些c值使 f′(c) = g′(c) = 0
四 泰勒公式
也称泰勒定理
4.1 定义
两种余项表达方式
皮亚诺型
拉格朗日型
推广
当f在a处n阶可导(注意与定理为n+1阶可导),把余项改成皮亚诺型即可
4.2 麦克劳林
即当x0=0时候的泰勒展开
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ( 2 ) ( 0 ) 2 ! x 2 + . . . + f ( n ) ( 0 ) n ! x n + R n ( x ) f(x) = f(0)+f'(0)x + \frac{f^{(2)}(0)}{2!}x^{2} + ... + \frac{f^{(n)}(0)}{n!}x^{n} + R_n(x) f(x)=f(0)+f′(0)x+2!f(2)(0)x2+...+n!f(n)(0)xn+Rn(x)
常用公式
补充几个
记忆:
ex最简单,e0 = 1,e(n) = 1;
sin 0 = 0, sin’0 x = cos 0 x = x,再次求导变回sin 0 = 0,因此是奇数项
cos 0 = 1,cos’0 x = sin 0 x= 0,再次求导变回cos 0 = 1,因此是偶数项,和恰好相反
三角函数特点:三阶
五 积分中值定理
积分第一中值定理
设f:[a,b]->R为一连续函数,g:[a,b]->R要求g(x)是可积函数且在积分区间不变号,那么存在一点ε∈[a,b]使得
∫ a b f ( x ) g ( x ) d x = f ( ε ) ∫ a b g ( x ) d x \int_{a}^{b}f(x)g(x)dx = f(ε)\int_{a}^{b}g(x)dx ∫abf(x)g(x)dx=f(ε)∫abg(x)dx
证明
特别地,当g(x)=1时候,公式如下:
∫ a b f ( x ) d x = f ( ε ) ( b − a ) \int_{a}^{b}f(x)dx = f(ε)(b-a) ∫abf(x)dx=f(ε)(b−a)
其中,a、b、ε满足:a <= ε <= b。
它也可以由拉格朗日中值定理推出:
f ( ε ) = F ′ ( ε ) = F ( b ) − F ( a ) b − a = ∫ a b f ( x ) d x b − a f(ε)=F'(ε) = \frac{F(b)-F(a)}{b-a} = \frac{\int_{a}^{b}f(x)dx}{b-a} f(ε)=F′(ε)=