矩阵
文章平均质量分 94
qq_16183037
这个作者很懒,什么都没留下…
展开
-
特征值与相似矩阵
通俗 向量α在矩阵A的线性变换作用下,保持方向不变,进行比例为λ的伸缩。官方(注意是方阵)特征方程=0)特征向量不能为0,但是特征值可以为0或虚数。方程中λ的次数应与A的阶数相同,否则不是特征方程。特征空间 一个特征空间是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间。注意上图有两个特征空间,分别为两条不同的直线其他:若特征值存在则r(λE-A)原创 2022-12-27 17:47:11 · 2513 阅读 · 0 评论 -
矩阵初入门
文章目录一 基本概念1.1 矩阵的定义1.2 常见的矩阵1.3 伴随矩阵二 运算及性质2.1 加减法2.2 乘法2.3 数乘2.4 转置三 矩阵的逆3.0 背景3.1 定义3.2 可逆矩阵定理3.3 运算性质3.4 求逆矩阵方法伴随矩阵法初等变换法3.5 类单位阵的逆四 初等变换4.1 行变换4.2 列变换4.3 初等矩阵五 矩阵的秩5.1 定义5.2 求法5.3 性质六 分块矩阵6.1 定义6.2 运算七 矩阵因式分解7.1 LU分解7.2 分解实例八 其他8.1 方阵的行列式8.2 其他九 基础例题9.原创 2021-07-07 22:07:06 · 2522 阅读 · 0 评论