矩阵初入门


​ 矩阵是一个数学工具,它可简化的问题:线性方程,线性变换,投影、最小二乘法、回归、SVD、PCA、图像处理、优化、机器学习、密码学,让复杂的公式变得简洁起来是矩阵的重要作用之一

一 基本概念

1.1 定义

image-20210703172457536

​ 数学上,一个m*n的矩阵是一个由m行(row)n列(column)元素排列成的矩形阵列。矩阵里的元素可以是数字、符号或数学式。

1.2 常见矩阵

名称特征
零矩阵所有元素均为0
对角矩阵对角线元素不全为0,其他元素为0
非奇异矩阵行列式不为 0 的矩阵;也称为可逆矩阵
实对称矩阵AT == A,即aij= aji
正交矩阵ATA = E
正定矩阵非0向量x使得XTAX>0
反对称阵AT == -A,即aij=- aji,aii=0
同型矩阵矩阵A,B的行、列数相同
行最简矩阵非零行主元(该行最左边的第1个非零元)为1且主元所在列其他元素为0
矩阵相等对应位置元素都相同
矩阵等价定义:B=QAP,A经过初等变换后变为B;充要:同型且秩等

1.3 伴随矩阵

定义

A = ( a 11 a 12 ⋯ a 1 , n − 1 a 1 , n a 21 a 22 ⋯ a 2 , n − 1 a 2 n ⋮ ⋮ ⋮ ⋮ a n − 1 , 1 a n − 1 , 2 ⋯ a n − 1 , n − 1 a n − 1 , n a n 1 a n 2 ⋯ a n , n − 1 a n n ) A=\left(\begin{array}{ccccc}a_{11} & a_{12} & \cdots & a_{1,n-1} & a_{1,n} \\ a_{21} & a_{22} & \cdots & a_{2,n-1} & a_{2n} \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1, n-1} & a_{n-1, n} \\ a_{n1} & a_{n2} & \cdots & a_{n, n-1} & a_{n n}\end{array}\right) = a11a21an1,1an1a12a22an1,2an2a1,n1a2,n1an1,n1an,n1a1,na2nan1,nann

为n阶矩阵,|A|中aij的余子式为Mij,代数余子式为Aij,称

A ∗ = ( A 11 A 21 ⋯ A n − 1 , 1 A n 1 A 12 A 22 ⋯ A n − 1 , 2 A n 2 ⋮ ⋮ ⋮ ⋮ A 1 , n − 1 A 2 , n − 1 ⋯ A n − 1 , n − 1 A n − 1 , n A 1 n A 2 , n ⋯ A n , n − 1 A n n ) A^{*}= \left(\begin{array}{ccccc} A_{11} & A_{21} & \cdots & A_{n-1,1} & A_{n 1} \\ A_{12} & A_{22} & \cdots & A_{n-1,2} & A_{n 2} \\ \vdots & \vdots & & \vdots & \vdots \\ A_{1, n-1} & A_{2, n-1} & \cdots & A_{n-1, n-1} & A_{n-1, n} \\ A_{1 n} & A_{2, n} & \cdots & A_{n, n-1} & A_{n n} \end{array}\right) A= A11A12A1,n1A1nA21A22A2,n1A2,nAn1,1An1,2An1,n1An,n1An1An2An1,nAnn

为矩阵A的伴随矩阵

性质
( 1 )   A A ∗ = A ∗ A = ∣ A ∣ E ( 2 )   ( A ∗ ) − 1 = ( A − 1 ) ∗ = 1 ∣ A ∣ A ( ∣ A ∣ ≠ 0 ) ( 3 )   ( k A ) ∗ = k n − 1 A ∗ ( 4 )   ( A ∗ ) T = ( A T ) ∗ ( 5 )   ∣ A ∗ ∣ = ∣ A ∣ n − 1 ( 6 )   ( A ∗ ) ∗ = ∣ A ∣ n − 2 A ( n ⩾ 2 ) \begin{array}{l} (1)\ {A A^{*}}=A^{*} A=|A| E \\(2)\ \left(A^{*}\right)^{-1}=\left(A^{-1}\right)^{*}=\frac{1}{|A|} A \quad(|A| \neq 0) \\(3)\ (k A)^{*}=k^{n-1} A^{*} \\(4) \ \left(A^{*}\right)^{\mathrm{T}}=\left(A^{\mathrm{T}}\right)^{*} \\(5) \ \left|A^{*}\right|=|A|^{n-1} \\(6) \ \left(A^{*}\right)^{*}=|A|^{n-2} A \quad(n \geqslant 2) \end{array} (1) AA=AA=AE(2) (A)1=(A1)=A1A(A=0)(3) (kA)=kn1A(4) (A)T=(AT)(5) A=An1(6) (A)=An2A(n2)
性质1的证明:

image-20210705162359326

证明
( 3 )   A A ∗ = ∣ A ∣ E , ∣ A ∣ ∣ A ∗ ∣ = ∣ ∣ A ∣ E ∣ = ∣ A ∣ n , ∣ A ∗ ∣ = ∣ A ∣ n − 1 ( 6 ) ( A ∗ ) ∗ = ∣ A ∗ ∣ ( A ∗ ) − = ∣ A ∣ n − 1 ( ∣ A ∣ A − 1 ) − 1 = ∣ A ∣ n − 2 A (3) \ AA^* = |A|E, |A||A^*| = | |A|E | = |A|^{n},|A^*| = |A|^{n-1} \\ (6) \quad (A^*)^* = |A^*|(A^*)^{-} = |A|^{n-1}(|A|A^{-1})^{-1} = |A|^{n-2}A (3) AA=AE,A∣∣A=∣∣AE=An,A=An1(6)(A)=A(A)=An1(AA1)1=An2A

二 运算及性质

加减

image-20210703173447029

运算法则

image-20210703174321949

乘法

定义(A的列数要与B的行数相同才能进行相乘)

image-20210705222504766

运算

image-20210705222624899

数乘

image-20210703173515553

运算法则

image-20210703174350544

转置

定义

image-20210703174229946

矩阵多项式

image-20210703174254863

重要性质

  1. $ \left(\boldsymbol{A}{\mathrm{T}}\right){\mathrm{T}}=\boldsymbol{A} $
  2. $ (k \boldsymbol{A})^{\mathrm{T}}=k \boldsymbol{A}^{\mathrm{T}} $
  3. $ \left(\boldsymbol{A}{-1}\right){\mathrm{T}}=\left(\boldsymbol{A}{\mathrm{T}}\right){-1} $
  4. $ \left(\boldsymbol{A}{\mathrm{T}}\right){m}=\left(\boldsymbol{A}{m}\right){\mathrm{T}} $
  5. $ (\boldsymbol{A} \pm \boldsymbol{B}){\mathrm{T}}=\boldsymbol{A}{\mathrm{T}} \pm \boldsymbol{B}^{\mathrm{T}} $
  6. $ (\boldsymbol{A} \boldsymbol{B}){\mathrm{T}}=\boldsymbol{B}{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} $

补充

( 1 )   A ≠ 0 , B ≠ 0 , 无法推出 A B ≠ 0 (1)\ A \neq 0,B \neq 0, 无法推出 AB \neq 0 (1) A=0,B=0,无法推出AB=0,同理AB=0也无法推出A=0或B=0

( 2 )   A ≠ 0 , 无法推出 A k ≠ 0 (2)\ A \neq 0, 无法推出 A^k \neq 0 (2) A=0,无法推出Ak=0

( 3 )   A x = λ x  特征值 , 有 f ( A ) x = f ( λ ) x (3)\ Ax=\lambda x \ 特征值 ,有f(A)x = f(\lambda)x (3) Ax=λx 特征值,f(A)x=f(λ)x

( 4 ) A B = A ( β 1 , β 2 ) = ( α 1 , α 2 ) B (4)AB = A(\beta_1,\beta2) = (\alpha_1,\alpha_2)B (4)AB=A(β1,β2)=(α1,α2)B

( 5 ) A 2 − A − 6 E = ( A + 2 E ) ( A − 3 E ) (5)A^2-A-6E = (A+2E)(A-3E) (5)A2A6E=(A+2E)(A3E)

( 6 ) 若 A B = B A ,则 ( A B ) 2 = ( B A ) 2 (6) 若AB=BA,则(AB)^2 = (BA)^2 (6)AB=BA,则(AB)2=(BA)2

( 7 ) 若 C = A B ,则说明 C 的列向量可由 A 的列向量表示, r ( A , C ) = r ( A ) (7) 若C=AB,则说明C的列向量可由A的列向量表示,r(A,C) = r(A) (7)C=AB,则说明C的列向量可由A的列向量表示,r(A,C)=r(A)

注意:矩阵的乘法交换律不一定成立【如AB 不一定等于BA】;矩阵有零因子;矩阵没有消去律。

三 矩阵的逆

背景

image-20210703194018956

3.1 定义

类比一个数的倒数乘以该数,值为1

image-20210703193446318

注意:若矩阵A可逆则对应的逆矩阵是唯一的。若A可逆,由AB=AC可推出B=C,当A不可逆时候不一定。

3.2 逆阵定理

​ 设A为nxn矩阵,则下列命题是等价的,即对某一特定的矩阵A,它们同时为真或同时为假。

 a.  A  是可逆矩阵.   b.  A  行等价于  n × n  单位矩阵.   c.  A  有  n  个主元位置.   d. 方程  A x = 0  仅有平凡解. 即零解  e.  A  的各列线性无关.   f. 线性变换  x ↦ A x  是一对一的.   g. 对  R n  中任意  b ,  方程  A x = b  至少有一个解   h.  A  的各列生成  R n .   i. 线性变换  x ↦ A x  把  R n  映上到  R n .  j. 存在  n × n  矩阵  C  使  C A = I .  k. 存在  n × n  矩阵  D  使  A D = I .  l.  A ⊤  是可逆矩阵.   m.  ∣ A ∣ ≠ 0  n.  A 为若干初等阵之积 \begin{array}{l}\text { a. } A \text { 是可逆矩阵. } \\ \text { b. } A \text { 行等价于 } n \times n \text { 单位矩阵. } \\ \text { c. } A \text { 有 } n \text { 个主元位置. } \\ \text { d. 方程 } A \boldsymbol{x}=\boldsymbol{0} \text { 仅有平凡解. 即零解} \\ \text { e. } A \text { 的各列线性无关. } \\ \text { f. 线性变换 } \boldsymbol{x} \mapsto A \boldsymbol{x} \text { 是一对一的. } \\ \text { g. 对 } \mathbb{R}^{n} \text { 中任意 } \boldsymbol{b}, \text { 方程 } A \boldsymbol{x}=\boldsymbol{b} \text { 至少有一个解 } \\ \text { h. } A \text { 的各列生成 } \mathbb{R}^{n} \text {. } \\ \text { i. 线性变换 } \boldsymbol{x} \mapsto A \boldsymbol{x} \text { 把 } \mathbb{R}^{n} \text { 映上到 } \mathbb{R}^{n} . \\ \text { j. 存在 } n \times n \text { 矩阵 } C \text { 使 } C A=I . \\ \text { k. 存在 } n \times n \text { 矩阵 } D \text { 使 } A D=I . \\ \text { l. } A^{\top} \text { 是可逆矩阵. } \\ \text { m. } |A| \neq 0 \\ \text { n. } A 为若干初等阵之积 \end{array}  a. A 是可逆矩阵 b. A 行等价于 n×n 单位矩阵 c. A  n 个主元位置 d. 方程 Ax=0 仅有平凡解即零解 e. A 的各列线性无关 f. 线性变换 xAx 是一对一的 g.  Rn 中任意 b, 方程 Ax=b 至少有一个解  h. A 的各列生成 Rn i. 线性变换 xAx  Rn 映上到 Rn. j. 存在 n×n 矩阵 C 使 CA=I. k. 存在 n×n 矩阵 D 使 AD=I. l. A 是可逆矩阵 m. A=0 n. A为若干初等阵之积

证明命题m
充分性 ∵ ∣ A ∣ ! ≠ 0 ∴ A A ∗ = ∣ A ∣ E , A 1 ∣ A ∣ A ∗ = E , A − 1 = 1 A A ∗ 必要性 ∵ A 可逆 ∴ 存在 B A = E , ∣ B ∣ ∣ A ∣ = 1 , 可得 ∣ A ∣ ≠ 0 充分性 \because |A|! \neq 0 \therefore AA^* = |A|E,A\frac{1}{|A|}A^* = E,A^{-1} = \frac{1}{A}A^{*} \\ 必要性 \because A可逆 \therefore 存在BA = E,|B||A|=1,可得|A| \neq 0 充分性A!=0AA=AE,AA1A=E,A1=A1A必要性A可逆存在BA=E,B∣∣A=1,可得A=0
证明a-l:

image-20210703194702344

3.3 性质

简单抽象矩阵的逆阵可假设为【x11,x12;x21,x22

 1.  ( A − 1 ) − 1 = A .  2.  ( k A ) − 1 = 1 k A − 1 .  3.  ( A B ) − 1 = B − 1 A − 1 .  4.  ( A T ) − 1 = ( A − 1 ) T .   5.  ( A n ) − 1 = ( A − 1 ) n .  6. 设  A , B  分别为  m  利  n  阶可逆矩阵,则   (1)  ( A O O B ) − 1 = ( A − 1 O O B − 1 ) ;  (2)  ( O A B O ) − 1 = ( O B − 1 A − 1 O )  (3)  ( A C O B ) − 1 = ( A − 1 − A − 1 C B − 1 O B − 1 ) \begin{array}{l} \text { 1. }\left(\boldsymbol{A}^{-1}\right)^{-1}=\boldsymbol{A} . \\ \text { 2. }(k \boldsymbol{A})^{-1}=\frac{1}{k} \boldsymbol{A}^{-1} . \\ \text { 3. }(\boldsymbol{A} \boldsymbol{B})^{-1}=\boldsymbol{B}^{-1} \boldsymbol{A}^{-1} . \\ \text { 4. }\left(\boldsymbol{A}^{\mathrm{T}}\right)^{-1}=\left(\boldsymbol{A}^{-1}\right)^{\mathrm{T}} \text {. } \\ \text { 5. }\left(\boldsymbol{A}^{n}\right)^{-1}=\left(\boldsymbol{A}^{-1}\right)^{n} . \\ \text { 6. 设 } \boldsymbol{A}, \boldsymbol{B} \text { 分别为 } m \text { 利 } n \text { 阶可逆矩阵,则 } \\ \begin{array}{ll} \text { (1) }\left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{B}\end{array}\right)^{-1}=\left(\begin{array}{cc}\boldsymbol{A}^{-1} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{B}^{-1}\end{array}\right) ; & \\ \text { (2) }\left(\begin{array}{ll}\boldsymbol{O} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{O}\end{array}\right)^{-1}=\left(\begin{array}{cc}\boldsymbol{O} & \boldsymbol{B}^{-1} \\ \boldsymbol{A}^{-1} & \boldsymbol{O} \end{array}\right) & \\ \text { (3) }\left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{C} \\ \boldsymbol{O} & \boldsymbol{B}\end{array}\right)^{-1}=\left(\begin{array}{cc}\boldsymbol{A^{-1}} & \boldsymbol{-A^{-1}CB^{-1}} \\ \boldsymbol{O} & \boldsymbol{B^{-1}} \end{array}\right) \end{array} \end{array}  1. (A1)1=A. 2. (kA)1=k1A1. 3. (AB)1=B1A1. 4. (AT)1=(A1)T 5. (An)1=(A1)n. 6.  A,B 分别为 m  n 阶可逆矩阵,  (1) (AOOB)1=(A1OOB1); (2) (OBAO)1=(OA1B1O) (3) (AOCB)1=(A1OA1CB1B1)

三种运算:*、T、-1是可交换的

证明6(3)
( A C O B ) ( x 11 x 12 x 21 x 22 ) = E B X 21 = 0 , X 21 = 0 B X 22 = E , X 22 = B − 1 A X 11 + C X 21 = E , X 11 = A − 1 A X 12 + C X 22 = 0 , A − A X 12 = − A − 1 C B − 1 \left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{C} \\ \boldsymbol{O} & \boldsymbol{B}\end{array}\right) \left(\begin{array}{cc}\boldsymbol{x_{11}} & \boldsymbol{x_{12}} \\ \boldsymbol{x_{21}} & \boldsymbol{x_{22}} \end{array}\right) = E \\ BX_{21}=0,X_{21}=0\\ BX_{22}=E,X_{22}=B^{-1}\\ AX_{11}+CX_{21}=E,X_{11}=A^{-1}\\ AX_{12}+CX_{22}=0,A^{-}AX_{12}=-A^{-1}CB^{-1}\\ (AOCB)(x11x21x12x22)=EBX21=0,X21=0BX22=E,X22=B1AX11+CX21=E,X11=A1AX12+CX22=0,AAX12=A1CB1

3.4 逆阵求解

一般不使用方法一,但是可以使用该公式的逆求伴随矩阵。

紧抓定义式:B * B的逆 = E

image-20210703195749497

初等变换法中即可行变换、也可列变换

伴随矩阵法

运算量大

例题:

image-20210705165150361

初等变换法

​ 把A变换为E的过程,每一次变换相当于初等变换,累积起来就相当于A的逆。

证明:

image-20210705170046806

例题:

image-20210705170007831

拼凑法

​ 这一类问题为已知关于矩阵A的某个式子,求(A+kE)的逆,思路是拼凑出 (A+kE) ( 拼凑 ) = E,从而可得(A+kE)的逆。拼凑时候要出现题目给出的已知条件。 1 − b n = ( 1 − b ) ( 1 + b + b 2 + . . . b n − 1 ) 1-b^n = (1-b)(1+b+b^2+...b^{n-1}) 1bn=(1b)(1+b+b2+...bn1)

【例】 A 2 + A − 4 E = 0 , 求 ( A − E ) 的逆 A^2+A-4E=0,求(A-E)的逆 \quad A2+A4E=0,(AE)的逆

【解】 ( A − E ) ( A + 2 E ) = 2 E , 从而 ( A − E ) − = 1 2 ( A + 2 E ) (A-E)(A+2E) = 2E,从而(A-E)^- = \frac{1}{2}(A+2E) (AE)(A+2E)=2E,从而(AE)=21(A+2E)

matlab

a=[1 2 3;4 5 6; 7 8 9]
inv(a)

3.5 类单位阵的逆

对角矩阵的逆
[ a 1 a 2 a 3 ] − 1 = [ 1 a 1 1 a 2 1 a 3 ] \left[\begin{array}{lll}a_{1} & & \\ & a_{2} & \\ & & a_{3}\end{array}\right]^{-1}=\left[\begin{array}{lll}\frac{1}{a_{1}} & & \\ & \frac{1}{a_{2}} & \\ & & \frac{1}{a_{3}}\end{array}\right] a1a2a3 1= a11a21a31

类E矩阵的逆,把对角元素的位置改为1/k,再根据式子补充。

[ 2 − 1 0 1 ] − 1 = [ 1 2 1 0 1 ] \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 1 \\ 0 & 1 \end{bmatrix} [2011]1=[21011]

反单位阵+仅1个其他位置元素,则其逆为对称位置的值添加负号(仅适用于奇数阶+仅一个位置元素更改)。

[ 0 2 1 0 1 0 1 0 0 ] − 1 = [ 0 0 1 0 1 0 1 − 2 0 ] \begin{bmatrix} 0 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^{-1} = \begin {bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & -2 & 0 \end{bmatrix} 001210100 1= 001012100

初等变换的E型阵逆阵是它变换的负数(思考,列变换)

E i , j − 1 ( k ) = E i , j ( − k ) E^{-1}_{i,j}(k)=E_{i,j}(-k) Ei,j1(k)=Ei,j(k)

只对换行或列的E型阵的逆是它本身(思考,行变换)

E ( i , j ) 2013 E ( i , j ) = E E^{2013}_{(i,j)}E_{(i,j)} = E E(i,j)2013E(i,j)=E

3.6 证明可逆

不可逆:|A| = -|A| = 0

四 初等变换

方程组的以下三种变形称为方程组的同解变形
(1)对调两个方程;

(2)某个方程两边同乘以一个非零常数;

(3)某个方程的倍数加到另一个方程

(4)代参数时候注意不能把0为这个可能性约分

4.1 行变换

E(i,j)(k)第j行的k倍加到i行,左乘

(1)对调矩阵的两行;

(2)矩阵的某行乘以非零常数k;

(3)矩阵某行的倍数加到另一行

4.2 列变换

E(i,j)(k)第i列的k倍加到j列,右乘

(1)对调矩阵的两列;

(2)矩阵某列乘以非零常数k;

(3)矩阵某列的倍数加到另一列

矩阵的初等行变换和初等列变换统称为矩阵的初等变换

4.3 初等矩阵

由单位矩阵经一次初等变换得到的矩阵称为初等矩阵,们分别是

变换名称符号作用
倍乘初等矩阵E(i(k))E的第i行(或第i列)乘以k倍
互换初等矩阵E(i,j)E的第i、j行(列)互换
倍加初等矩阵E(ij(k))E的第j行(或i列)的k倍加到第i行(j列)

注意:左乘 行变换;右乘 列变换。关于Eij有一些书籍的ij可能是相反的。下面LU分解中的Eij以该处为准。

​ 仅经过行变换Q,无法保证可把矩阵A转换为 = (  Er  0 0 0 ) =\left(\begin{array}{cc}\text { Er } & 0 \\ 0 & 0\end{array}\right) =( Er 000),因为上下加减只能把变为0;仅经过变换P只能把变为0;因此,如果行、列变换都进行,QAP(Q,P均可逆),则可以把A转换为 = (  Er  0 0 0 ) =\left(\begin{array}{cc}\text { Er } & 0 \\ 0 & 0\end{array}\right) =( Er 000)

五 矩阵的秩

更详细的内容请参阅线性代数及其应用第二章及子空间内容

5.1 定义

定义1 类似极大线性无关组

image-20210703214418201

定义2

​ 矩阵A的秩(记为rank A)是A的列空间的维数.

5.2 求法

求法1

image-20210704215226078

求法2 行变换阶梯化,非零行的个数

image-20210704215622681

5.3 性质

证明性质(1)(同解的线性方程组,秩相等)
A X = 0 , A T A X = 0 A T A X = 0 , X T A T A X = ( A T ) T A X = 0 即 A X = 0 , 所以 A A T A 同解 , 故秩相等 AX=0,A^TAX=0 \\ A^TAX = 0, X^TA^TAX=(AT)^TAX=0 \\ 即AX=0,所以A A^TA 同解,故秩相等 AX=0,ATAX=0ATAX=0,XTATAX=(AT)TAX=0AX=0,所以AATA同解,故秩相等
(1)$r ( A ) = r ( A ^ { T } ) = r ( A ^ { T } A ) $

(2)当 k ≠ 0 k \neq 0 k=0 r ( k A ) = r ( A ) r ( kA ) = r ( A ) r(kA)=r(A)

(3) r ( A ± B ) ≤ r ( A ) + r ( B ) , m a x ( r ( A ) , r ( B ) ) ≤ r ( A , B ) ≤ r ( A ) + r ( B ) r ( A \pm B ) \leq r ( A ) + r ( B ) ,max(r(A),r(B)) \le r(A,B) \le r(A)+r(B) r(A±B)r(A)+r(B)max(r(A),r(B))r(A,B)r(A)+r(B)

(4) r ( C ) = r ( A B ) ≤ m i n ( r ( A ) , r ( B ) ) 、 r ( C ) ≤ r ( A ) r ( C ) ≤ r ( B ) ? r(C) = r ( AB ) \leq min ( r ( A ) , r ( B ) )、r(C) \leq r(A) r(C) \leq r(B)? r(C)=r(AB)min(r(A),r(B))r(C)r(A)r(C)r(B)

(5)若 A A A可逆,则 r ( A B ) = r ( B ) , r ( B A ) = r ( B ) r ( AB ) = r ( B ) , r ( BA ) = r ( B ) r(AB)=r(B),r(BA)=r(B)

(6)若 A A A m × n m \times n m×n矩阵, B B B n × s n \times s n×s矩阵, A B = O AB = O AB=O r ( A ) + r ( B ) ≤ n r ( A ) + r ( B ) \leq n r(A)+r(B)n

(7) r [ A 0 0 B ∣ = r ( A ) + r ( B ) r [ \begin{array} { ll } { { A } } & { { 0 } } \\ { { 0 } } & { { B } } \\ \end{array} | = {r ( A )} + {r ( B )} r[A00B=r(A)+r(B) r [ A A B 0 B ∣ = r ( A ) + r ( B ) r [ \begin{array} { ll } { { A } } & { { AB } } \\ { { 0 } } & { { B } } \\ \end{array} | = {r ( A )} + {r ( B )} r[A0ABB=r(A)+r(B)(通过列变换可消去AB(a_1+a_2,a_2+a_1),而B由于左侧是0阵,不受影响;BA就未必了,无法消去), r ( A , A B ) = r ( A ) , r ( A , B A ) ≥ r ( A ) r(A,AB) = r(A),r(A,BA) \ge r(A) r(A,AB)=r(A)r(A,BA)r(A)

(8)若 A ∼ B A \sim B AB r ( A ) = r ( B ) , r ( A + k E ) = r ( B + k E ) r ( A ) = r ( B ) , r ( A + kE ) = r ( B + kE ) r(A)=r(B),r(A+kE)=r(B+kE)

(9) r ( A ∗ ) = { n ,  如果  r ( A ) = n , 1 ,  如果  r ( A ) = n − 1 , 0 ,  如果  r ( A ) < n − 1. ( n ≥ 2 ) r\left(\boldsymbol{A}^{*}\right)=\left\{\begin{array}{ll}n, & \text { 如果 } r(\boldsymbol{A})=n, \\ 1, & \text { 如果 } r(\boldsymbol{A})=n-1, \\ 0, & \text { 如果 } r(\boldsymbol{A})<n-1 .\end{array}\right. (n \ge 2) r(A)= n,1,0, 如果 r(A)=n, 如果 r(A)=n1, 如果 r(A)<n1.(n2)

(10) r ( A ) = 1 的充要条件是存在 α 和 β ≠ 0 , 使得 A = α β T r(A) = 1 的充要条件是 存在 \alpha 和 \beta \neq 0,使得A=\alpha \beta ^T r(A)=1的充要条件是存在αβ=0,使得A=αβT(默认是列向量,展开后其他行都是第一行的倍数)

(11) r ( A ) = 1 , A n = k n − 1 A , 其中 k = α β T = ∑ a i i = ∑ λ i r(A) = 1,A^n = k^{n-1}A,其中k=\alpha \beta ^T=\sum a_{ii} =\sum \lambda_{i} r(A)=1,An=kn1A,其中k=αβT=aii=λi

(12) 矩阵的r=m,则任意的m+1阶子式的行列式均为0

证明性质(9) M_{ij}:n-1阶子式
∵ r ( A ) = n , ∣ A ∣ ≠ 0 , ∣ A ∗ ∣ = ∣ A ∣ n − 1 ≠ 0   ∴ r ( A ∗ ) = n ∵ r ( A ) = n − 1 , A A ∗ = 0 , r ( A ) + r ( A ∗ ) ≤ n , r ( A ∗ ) ≤ 1 又 ∵ 存在 M i j ≠ 0 ,则 A ∗ 不是 0 阵, r ( A ∗ ) ≥ 1 ∴ r ( A ∗ ) = 1 ∵ r ( A ) < n − 1 ∴ M i j = 0 , r ( A ∗ ) = 0 \because r(A) = n,|A|\neq0,|A*|=|A|^{n-1} \neq 0 \ \therefore r(A^*)=n \\ \because r(A) = n-1, AA^*=0,r(A)+r(A^*) \le n,r(A^*) \le 1 \\ 又\because 存在M_{ij} \neq 0, 则A^*不是0阵,r(A^*) \ge 1 \therefore r(A^*) = 1 \\ \because r(A)<n-1 \therefore M_{ij}=0,r(A^*)=0 r(A)=n,A=0,A=An1=0 r(A)=nr(A)=n1,AA=0,r(A)+r(A)n,r(A)1存在Mij=0,则A不是0阵,r(A)1r(A)=1r(A)<n1Mij=0,r(A)=0
秩的本质是方程组约束条件的个数

image-20210704215709021

image-20210704220130835

矩阵等价QAP=B 则其 充要条件 r(A) = r(B)

列向量的秩等于0或1(当a是0向量时候秩才为0)

α ⊤ α = ( a 1 … a n ) ∣ a 1 ⋮ a n ∣ = a 1 2 + ⋯ + a n 2 = ∣ α ∣ 2 ≥ 0 \alpha^{\top} \alpha=\left(a_{1} \ldots a_{n}\right)\left|\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right|=a_{1}^{2}+\cdots+a_{n}^{2}=|\alpha|^{2}\ge 0 αα=(a1an) a1an =a12++an2=α20

【例题】2021数一

image-20221127144844838

六 分块矩阵

思想:矩阵可以看作是一个数的矩形表,也可以把它看作一组列向量。

6.1 定义

​ 将矩阵用若干纵线和横线分成许多小块,每一小块称为原矩阵的子矩阵(或子块),把子块看成原矩阵的一个元素,则原矩阵叫分块矩阵

6.2 运算

加法

image-20210704221649502

乘法

image-20210704221734020

image-20210704221802723

其他

image-20210704221816993

[ A B C D ] T = [ A T C T B T D T ] \left[\begin{array}{ll}\boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D}\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ll}\boldsymbol{A}^{\mathrm{T}} & \boldsymbol{C}^{\mathrm{T}} \\ \boldsymbol{B}^{\mathrm{T}} & \boldsymbol{D}^{\mathrm{T}}\end{array}\right] [ACBD]T=[ATBTCTDT]

七 矩阵因式分解

思想

  • 矩阵乘法是数据的综合,矩阵因式分解是数据的分解
  • 矩阵因式分解把矩阵表示为多个矩阵的乘积。
  • 计算机中称之为对A数据的预处理,该结构或许更有利与分析,可能更利于计算。

7.1 LU分解

​ 在研究如何构造LU之前,我们看看它的作用。当A=LU,方程Ax=b可以写为L(Ux) = b,令Ux=y,则Ly=b,Ux=y。由于L,U均为三角矩阵,因此求解较为容易。

LU分解算法

image-20210704223550736

7.2 分解实例

题目:

image-20210704223713824

解:

image-20210705131256224

​ 这里需要注意一下,单位矩阵基础上增加某个位置元素值为k,那么其对应的逆矩阵就是单位矩阵加该位置的-k。

​ 例如L21=-2其实是E21(2)的"逆",意为把第一行的2倍加到第二行,由矩阵A可以看出,其实就相当于 -4+2*(2)=0

​ LU分解在数值计算中的作用

image-20210705131509159

八 其他

8.1 方阵行列式

image-20210705133703603

8.2 其他

进阶阅读书籍

名称难度
MIT的线代课
线性代数及其应用入门
3Blue1blown的线性代数本质系列

九 基础例题

AA*=|A|E

9.1 矩阵运算

逆的关系

image-20210705215304235

解:
若  A B C = E 则  A − 1 = B C 或 A B = C − 1 有  A − 1 A = B C A = E 或 C C − 1 = C A B = E 若\ ABC = E \\ 则\ A^{-1} = BC或AB=C^{-1} \\ 有\ A^{-1}A=BCA=E或CC^{-1}=CAB=E  ABC=E A1=BCAB=C1 A1A=BCA=ECC1=CAB=E

分解后发现即证明AB=BA,利用题目信息左乘右乘共4仲,对比式子

image-20210705224554124

  1. 方阵的行列式

image-20210705231014513

9.2 幂矩阵

image-20210706143148413

法二
矩阵 A 1 的作用: 1.  第一行乘以倍数 1 2.   E 12 ( 1 ) : 第二行的 1 倍加到第一行 3.  第二行乘以倍数 2 显然 A n 中 a 11 = a 22 = 2 n , a 21 = 0 A 2 2 × 1 + 2 1 A 3 2 × [ 2 × 1 + 2 1 ] + 2 2 A 4 2 × [ 2 × [ 2 × 1 + 2 1 ] + 2 2 ] + 2 3 A n 2 × [ 2 × [ 2 × [ 2. [ . [ . [ 2 × 1 + 2 1 ] + 2 2 ] + 2 3 ] . ] . . . + 2 n − 2 ] + 2 n − 1   = 2 n − 1 + 2 n − 1 + 2 n − 1 + . . . . . . . . . + 2 n − 1   = n × 2 n − 1 = C n 1 × 2 n − 1 感觉有点像秦九韶 由此可得 A 1 n = [ 2 n C n 1 2 n − 1 0 2 n ] \begin{align} &矩阵A_1的作用:\\ & 1.\ 第一行乘以倍数1 \\ & 2.\ E_{12}(1):第二行的1倍加到第一行\\ & 3.\ 第二行乘以倍数2 \\ & 显然A^{n}中a_{11}=a_{22}=2^n,a_{21}=0 \\ & A^2 \quad 2\times1+2^1 \\ & A^3 \quad 2\times[2\times1+2^1]+2^2 \\ & A^4 \quad 2\times[2\times[2\times1+2^1]+2^2]+2^3 \\ & A^n \quad 2\times[2\times[2\times[2.[.[.[2\times1+2^1]+2^2]+2^3].]...+2^{n-2}]+2^{n-1}\\ & \ \quad = 2^{n-1}+2^{n-1}+2^{n-1}+.........+2^{n-1} \\ & \ \quad = n \times 2^{n-1} = C_n^1 \times 2^{n-1} \\ & 感觉有点像秦九韶 \\ & 由此可得A_1^n = \begin{bmatrix} 2^n & C_n^1 2^{n-1}\\ 0 & 2^n \end{bmatrix} \end{align} 矩阵A1的作用:1. 第一行乘以倍数12. E12(1):第二行的1倍加到第一行3. 第二行乘以倍数2显然Ana11=a22=2n,a21=0A22×1+21A32×[2×1+21]+22A42×[2×[2×1+21]+22]+23An2×[2×[2×[2.[.[.[2×1+21]+22]+23].]...+2n2]+2n1 =2n1+2n1+2n1+.........+2n1 =n×2n1=Cn1×2n1感觉有点像秦九韶由此可得A1n=[2n0Cn12n12n]

  1. P[] = AP,因此P-1AP = []

image-20210706204043927

解:P的逆,E(21)(1),E(23)(-1)P = E

image-20210706204819900

image-20210706204834210

image-20210706224452640

image-20210706231717956

解(2)P[A|E] = [PA | P] = [B | P] E(12),E(31)(-2),E(23),E(32)(1),E(21)(1)

image-20210706231802524

9.3 逆阵计算

image-20210706232118530

  1. 证明一个矩阵可逆即证明该矩阵 [] 乘以某个矩阵 [] = E

image-20210706232326581

  1. 拼凑

image-20210707124949825

image-20210707130002890

image-20210707130622143

  1. 证明一个矩阵可逆,则找出它的逆或者证明其行列式不为0

image-20210707132203656

image-20210707142645921

  1. 求逆

image-20210705212801418

9.4 A*与逆矩

紧抓公式 A* = |A|A-1

image-20210707144135967

image-20210707204544806

  1. 计算 A − 1 B 时候不需要把 A 的逆算出来,仅需 [ A ∣ B ] 变换为 [ A − 1 A ∣ A − 1 B ] = [ E ∣ A − 1 B ] 计算A^{-1}B时候不需要把A的逆算出来,仅需[A|B]变换为[A^{-1}A|A^{-1}B] = [E|A^{-1}B] 计算A1B时候不需要把A的逆算出来,仅需[AB]变换为[A1AA1B]=[EA1B]

image-20210707212821271

image-20210707212841767

image-20210707215503014

image-20210707215546042

  1. 类正单位阵的逆是它本身

A可逆,E(i,j)A = B,求A*与B*的关系
∵ E ( i , j ) A = B , ∣ E ( i , j ) ∣ ∣ A ∣ = − ∣ A ∣ = ∣ B ∣ ∴ B ∗ = ∣ B ∣ B − 1 = − ∣ A ∣ A − 1 E ( i , j ) − 1 = − A ∗ E ( i , j ) \because E(i,j)A = B,|E(i,j)||A| = -|A| = |B| \\ \therefore B^* = |B| B^{-1} = -|A| A^{-1}E(i,j)^{-1} =-A^{*}E(i,j) E(i,j)A=B,E(i,j)∣∣A=A=BB=BB1=AA1E(i,j)1=AE(i,j)

9.6 秩的计算

  1. 若 AB = 0 则 r ( A ) + r ( B ) ⩽ n r(\boldsymbol{A})+r(\boldsymbol{B}) \leqslant n r(A)+r(B)n

image-20211127191519542

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值