【机器学习】主成分分析法

原创声明:本文为犇丿灬犇原创文章未经博主允许不得转载。犇丿灬犇博客地址 [犇丿灬犇博客]

主成分分析(Principal components analysis,以下简称PCA)是一种简单的机器学习算法。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。可以通过线性代数的方法进行推导。
##推导过程
假设在 R n \mathbb R^n Rn空间有 m m m个点 { x ( 1 ) , x ( 2 ) , . . . x ( m } \{x^{(1)},x^{(2)},...x^{(m}\} {x(1),x(2),...x(m},我们希望对这些点进行有损压缩。这可以使我们使用更少的内存来存储信息,但我们希望精度损失尽可能少。
主成分分析是一种编码方法,即用函数 f ( x ) = c f(\mathbf x)=\mathbf c f(x)=c,其中 x ∈ R n \mathbf x\in \mathbb R^n xRn c ∈ R m \mathbf c\in \mathbb R^m cRm, m &lt; n m&lt;n m<n,主成分分析选择解码函数为 g ( c ) = D c g(\mathbf c)=\mathbf {Dc} g(c)=Dc,其中 D ∈ R n × m \mathbf D\in\mathbb R^{n\times m} DRn×m,其列向量彼此正交且为单位向量,为得到一个最优解 c ∗ \mathbf c^* c,需要使 c 与 x \mathbf c与\mathbf x cx的距离最小,即:
c ∗ = arg ⁡ min ⁡ c ∥ x − g ( c ) ∥ 2 2 \mathbf c^*= \arg\min_{\mathbf c} \|\mathbf x-g(\mathbf c)\|_2^2 c=argcminxg(c)22
也即:
c ∗ = arg ⁡ min ⁡ c   ( x − g ( c ) ) T ( x − g ( c ) ) \mathbf c^*= \arg\min_{\mathbf c} \ (\mathbf x-g(\mathbf c))^T(\mathbf x-g(\mathbf c)) c=argcmin (xg(c))T(xg(c))
由于 x T x \mathbf x^T\mathbf x xTx不依赖于 c \mathbf c c因此
c ∗ = arg ⁡ min ⁡ c   ( − 2 x T g ( c ) + g ( c ) T g ( c ) ) \mathbf c^*= \arg\min_{\mathbf c} \ (-2\mathbf x^Tg(\mathbf c)+g(\mathbf c)^Tg(\mathbf c)) c=argcmin (2xTg(c)+g(c)Tg(c))
更进一步带入 g ( c ) = D c g(\mathbf c)=\mathbf {Dc} g(c)=Dc

c ∗ = arg ⁡ min ⁡ c   ( − 2 x T D c + c T I l c ) \mathbf c^*= \arg\min_{\mathbf c} \ (-2\mathbf x^T\mathbf {Dc}+\mathbf c^T\mathbf I_l \mathbf c) c=argcmin (2xTDc+cTIlc)

根据梯度下降法取$ (-2\mathbf x^T\mathbf {Dc}+\mathbf c^T\mathbf I_l \mathbf c)$的梯度等于零
▽ c ( − 2 x T D c + c T I l c ) = 0 \bigtriangledown_{\mathbf c} (-2\mathbf x^T\mathbf {Dc}+\mathbf c^T\mathbf I_l \mathbf c)=0 c(2xTDc+cTIlc)=0
得:
c = D T x \mathbf c=\mathbf D^T \mathbf x c=DTx
因此
x ≈ g ( f ( x ) ) = D D T x = r ( x ) \mathbf x\approx g(f(\mathbf x))=\mathbf{DD^Tx}=r(\mathbf x) xg(f(x))=DDTx=r(x)
接下来分析如何挑选 D \mathbf D D,要挑选最优的 D \mathbf D D就必须使所有的点重构值与真实值之间距离和最小,即:
D ∗ = arg ⁡ min ⁡ D ∑ i , j ( x j ( i ) − r ( x ( i ) ) j ) 2   , 这 里 D T D = I l \mathbf D^*= \arg\min_{\mathbf D}\sqrt{\sum_{i,j}( x_j^{(i)}-r(\mathbf x^{(i)})_j)^2}\ ,这里\mathbf D^T\mathbf D=\mathbf I_l D=argDmini,j(xj(i)r(x(i))j)2  ,DTD=Il
为简化运算以寻求 D ∗ \mathbf D^* D的算法,取 l = 1 l=1 l=1此时 D D D变为一个列向量 d \bf d d

整理得: d ∗ = arg ⁡ min ⁡ d ∑ i ∥ x ( i ) − d d T x ( i ) ) ∥ 2   , 这 里 d T d = 1 \mathbf d^*= \arg\min_{\mathbf d}\sum_{i}\|\mathbf x^{(i)}-\mathbf {dd^Tx}^{(i)})\|^2\ ,这里\mathbf d^T\mathbf d=1 d=argdminix(i)ddTx(i))2 ,dTd=1
将求和形式写成矩阵形式:
d ∗ = arg ⁡ min ⁡ d ∥ X − X d d T ∥ 2   , 这 里 d T d = 1 \mathbf d^*= \arg\min_{\mathbf d}\|\mathbf X-\mathbf {Xdd^T}\|^2\ ,这里\mathbf d^T\mathbf d=1 d=argdminXXddT2 ,dTd=1
不考虑 d T d = 1 \mathbf d^T\mathbf d=1 dTd=1
得:
\begin{equation}
\begin{split}
\mathbf d^&= \arg\min_{\mathbf d}|\mathbf X-\mathbf {XddT}|2\
&= \arg\min_{\mathbf d} \ Tr((\mathbf X-\mathbf {XddT})T(\mathbf X-\mathbf {Xdd^T}))
\end{split}
\end{equation}
整理(除去与 d \bf d d无关项)得:
\begin{equation}
\begin{split}
\mathbf d^
&= \arg\min_{\mathbf d}(-2Tr(\mathbf{XTXddT})+Tr(\mathbf{XTXddTdd^T}))
\end{split}
\end{equation}

考虑 d T d = 1 \mathbf d^T\mathbf d=1 dTd=1
\begin{equation}
\begin{split}
\mathbf d^*&= \arg\min_{\mathbf d}(-Tr(\mathbf{XTXddT})) \
&=\arg\max_{\mathbf d}(Tr(\mathbf{XTXddT}))\
&=\arg\max_{\mathbf d}(Tr(\mathbf{dTXTXd}))
\end{split}
\end{equation}
上式可以通过特征分解求解,最优的 d \bf d d X T X \bf{X^TX} XTX的最大特征值对应的特征向量。此为 l = 1 l=1 l=1时的情况,更一般的,主成分分析可以取 l l l个特征值对应的特征向量,这可以用数学归纳法证明。
##sklearn中主成分分析法的使用

class sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False)

###参数含义
n_components

意义:PCA算法中所要保留的主成分个数n,也即保留下来的特征个数n
类型:int 或者 string,缺省时默认为None,所有成分被保留。
赋值为int,比如n_components=1,将把原始数据降到一个维度。
赋值为string,比如n_components=‘mle’,将自动选取特征个数n,使得满足所要求的方差百分比。

copy:

类型:bool,True或者False,缺省时默认为True。
意义:表示是否在运行算法时,将原始训练数据复制一份。
若为True,则运行PCA算法后,原始训练数据的值不会有任何改变,因为是在原始数据的副本上进行运算;
若为False,则运行PCA算法后,原始训练数据的值会改,因为是在原始数据上进行降维计算。

whiten:

类型:bool,缺省时默认为False
意义:白化,使得每个特征具有相同的方差。
###类对象
components_ :返回具有最大方差的成分。
explained_variance_ratio_:返回 所保留的n个成分各自的方差百分比。
n_components_:返回所保留的成分个数n。
mean_:
noise_variance_:
###类方法
fit(X,y=None)
fit()可以说是scikit-learn中通用的方法,每个需要训练的算法都会有fit()方法,它其实就是算法中的“训练”这一步骤。因为PCA是无监督学习算法,此处y自然等于None。
fit(X),表示用数据X来训练PCA模型。
函数返回值:调用fit方法的对象本身。比如pca.fit(X),表示用X对pca这个对象进行训练。

fit_transform(X)

用X来训练PCA模型,同时返回降维后的数据。
newX=pca.fit_transform(X),newX就是降维后的数据。

inverse_transform()

将降维后的数据转换成原始数据,X=pca.inverse_transform(newX)

transform(X)

将数据X转换成降维后的数据。当模型训练好后,对于新输入的数据,都可以用transform方法来降维。

此外,还有get_covariance()、get_precision()、get_params(deep=True)、score(X, y=None)等方法。

  1. https://www.cnblogs.com/eczhou/p/5433856.html
  2. [美]伊恩·古德费洛(Lan Goodfellow)[加]约书亚·本吉奥(Yoshua Bengio)[加]亚伦·库维尔(Aaron Courville)深度学习【M】
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值