什么是 随机裁剪
什么是 随机裁剪(Random Crop)
随机裁剪呢,简单说就是在一张图片或者一个东西上,随机地选一块区域给剪下来。
给你举个生活中的例子哈。
比如说你有一张很大的全家福照片,照片里有好多人,还有各种背景。现在让你随机裁剪。那就好比你闭上眼睛,随便在照片上画一个小方块(这个小方块就是裁剪的区域),然后把这个小方块里的画面剪下来。每次你闭上眼睛画的小方块位置都可能不一样,这就是随机的意思。
在计算机图像处理里也是类似。计算机要处理一张图片的时候,它就按照一定的规则,随机在这张图片上选取一个矩形的区域,然后把这个区域的图像保留下来,这就是随机裁剪 。
这么做的目的有不少呢,比如有时候为了让训练的图像数据更丰富多样,通过随机裁剪不同区域的图片,就好像得到了好多不一样的新图片,这样能让计算机学习到更多不同角度、不同部分的图像特征 。
随机裁剪在图像数据增强中有哪些具体应用?
下面给你说说随机裁剪在图像数据增强里的具体应用哈。
增加图像数量
比如说你要训练一个识别猫的图像识别模型。一开始你只有100张猫的图片,数量有点少,模型可能学不好。这时候用随机裁剪,从每张猫的图片上随机剪出不同的小区域。原本一张图片只能算一份数据,现在通过随机裁剪,一张图片能剪出好几份不同的小图片,这样数据量一下子就增加了,模型能看到更多不同样子的猫,学习效果就可能更好。
模拟不同场景
现实生活中,我们看到猫的角度、位置啥的都不一样。随机裁剪就能模拟这种情况。从猫图片的不同位置裁剪,有的可能是从猫脸部分裁出来,有的可能是从猫身体侧面裁出来,还有的能裁到猫和背景的不同组合。这就好像在不同场景下看到的猫,让模型能学习到猫在各种情况下的特征,以后识别起来就更准了。
提升模型泛化能力
还是拿猫的模型举例。如果只拿完整的、固定角度的猫图片训练模型,模型可能只认识这种特定样子的猫。但用随机裁剪得到各种不同裁剪区域的图片训练后,模型面对新的、没见过的猫的图片,不管猫在图片里是什么位置、占多大比例,模型都更有可能准确识别出来,也就是模型的泛化能力变强啦。
随机裁剪的缺陷是什么?
随机裁剪虽然好用,但也有一些缺陷:
可能丢失关键信息
就好比你有一张画着完整房子的画,房子的大门、窗户这些都是重要部分。要是随机裁剪,有可能把大门或者窗户这些关键地方给裁掉了。在图像里也是,一些重要的物体特征或者细节可能就因为随机裁剪没了,这会影响对图像内容的理解。比如说识别一张有动物的图片,动物的关键部位比如眼睛、鼻子被裁掉了,那识别起来就困难了。
裁剪后图像质量参差不齐
裁剪出来的图像大小、内容都不一样。有些裁剪后的图像可能看起来还挺完整、清晰,能很好地传达信息。但有些可能就很奇怪,只裁到了图像的边缘部分,或者只裁到一些不太重要的背景,没有裁到关键物体。这就导致用这些裁剪后的图像训练模型时,质量有好有坏,模型学习起来可能就会受影响。
可能产生不自然的裁剪结果
随机裁剪是完全随机的,有可能会出现一些不符合常理的裁剪情况。比如一张人物图片,可能正好裁到人物身体断开的地方,看起来就很不自然。这种不自然的裁剪结果可能对模型训练没什么帮助,甚至还会干扰模型学习正常的图像特征。
如何减轻随机裁剪带来的图像质量参差不齐问题?
以下是一些减轻随机裁剪带来的图像质量参差不齐问题的方法:
设定裁剪限制
- 最小尺寸限制:比如说裁剪图片的时候,规定裁剪出来的小图片不能太小。就像你裁剪一块布料做衣服,不能剪得太小,不然啥都做不了。要是图片裁得太小,可能就看不清里面的东西了。所以设定一个最小的边长或者面积,保证裁剪出来的图片大小能包含足够的信息。
- 避免裁剪到边缘过多:可以设置不要让裁剪区域太靠近图像的边缘。如果太靠近边缘,很容易只裁到一些没什么用的空白或者不完整的部分。就好比你切蛋糕,不能只切到边边那一点点,得切到中间有奶油和水果的地方,这样切出来的蛋糕才好吃,图片也是,得裁到有内容的地方。
后处理操作
- 图像增强处理:裁剪完图片后,可以做一些图像增强的操作。比如调整亮度、对比度。就像给照片调滤镜一样,太暗的图片把亮度调高,对比不明显的把对比度加大,这样能让裁剪后的图片看起来更清晰、更有质感。
- 图像修复:要是裁剪后的图片有些地方看起来残缺不全,可以用图像修复技术。现在