神经网络矩阵运算公式总结

  • 1.

t r ( A ⋅ ( B ⊙ C ) ) = t r ( ( A ⊙ B T ) ⋅ C ) tr\left(A\cdot\left(B\odot C\right)\right)=tr\left(\left(A\odot B^{T}\right)\cdot C\right) tr(A(BC))=tr((ABT)C)


  • 2.

t r ( A ⋅ ( B ∗ v a l i d C ) ) = t r ( ( A ∗ f u l l B r o t T ) ⋅ C ) = t r ( ( A ∗ v a l i d C r o t T ) ⋅ B ) tr\left(A\cdot\left(B*_{valid} C\right)\right)=tr\left(\left(A*_{full} B_{rot}^{T}\right)\cdot C\right)=tr\left(\left(A*_{valid} C_{rot}^{T}\right)\cdot B\right) tr(A(BvalidC))=tr((AfullBrotT)C)=tr((AvalidCrotT)B) 其中 : A ∈ R m − n + 1 × m − n + 1 , B ∈ R n × n , C ∈ R m × m , 且 m ≥ n ≥ 2 其中:A\in\mathbb{R}^{m-n+1\times m-n+1},B\in\mathbb{R}^{n\times n},C\in\mathbb{R}^{m\times m},且m\ge n\ge 2 其中:ARmn+1×mn+1,BRn×n,CRm×m,mn2


  • 3.

t r ( A ⋅ ( B ∗ f u l l C ) ) = t r ( ( A ∗ v a l i d B r o t T ) ⋅ C ) = t r ( ( A ∗ v a l i d C r o t T ) ⋅ B ) tr\left(A\cdot\left(B*_{full} C\right)\right)=tr\left(\left(A*_{valid} B_{rot}^{T}\right)\cdot C\right)=tr\left(\left(A*_{valid} C_{rot}^{T}\right)\cdot B\right) tr(A(BfullC))=tr((AvalidBrotT)C)=tr((AvalidCrotT)B) 其中 : A ∈ R m + n − 1 × m + n − 1 , B ∈ R n × n , C ∈ R m × m , 且 m ≥ 2 , n ≥ 2 其中:A\in\mathbb{R}^{m+n-1\times m+n-1},B\in\mathbb{R}^{n\times n},C\in\mathbb{R}^{m\times m},且m\ge 2, n\ge 2 其中:ARm+n1×m+n1,BRn×n,CRm×m,m2,n2


  • 4.

A r o t T = ( A r o t ) T = ( A T ) r o t A_{rot}^{T}=\left(A_{rot}\right)^{T}=\left(A^{T}\right)_{rot} ArotT=(Arot)T=(AT)rot


  • 5.

d ( A ∗ { f u l l   O R   v a l i d } B ) = d A ∗ { f u l l   O R   v a l i d } B + A ∗ { f u l l   O R   v a l i d } d B d(A*_{\{full\ OR\ valid\}}B)=dA*_{\{full\ OR\ valid\}}B+A*_{\{full\ OR\ valid\}}dB d(A{full OR valid}B)=dA{full OR valid}B+A{full OR valid}dB


  • 6.

d ( A ⋅ B ) = d A ⋅ B + A ⋅ d B d(A\cdot B)=dA\cdot B+A\cdot dB d(AB)=dAB+AdB


  • 7.

d ( A ⊙ B ) = d A ⊙ B + A ⊙ d B d(A\odot B)=dA\odot B+A\odot dB d(AB)=dAB+AdB


  • 8.

d f = t r ( ∂ f ∂ X T ⋅ d X ) df=tr\left(\frac{\partial f}{\partial X}^{T}\cdot dX\right) df=tr(XfTdX)


  • 9.

d t r ( X ) = t r ( d X ) dtr(X)=tr(dX) dtr(X)=tr(dX)


  • 10.

设 A , B , C 为四维数组 , 设A,B,C为四维数组, A,B,C为四维数组, A ∈ R m × n × h × h , B ∈ R m × p × l × l , C ∈ R p × n × k × k , A\in\mathbb{R}^{m\times n\times h\times h},B\in\mathbb{R}^{m\times p\times l\times l},C\in\mathbb{R}^{p\times n\times k\times k}, ARm×n×h×h,BRm×p×l×l,CRp×n×k×k, A = [ α 11 α 12 … α 1 n α 21 α 22 … α 2 n ⋮ ⋮ ⋱ ⋮ α m 1 α m 2 … α m n ] , A=\begin{bmatrix} \alpha_{11}& \alpha_{12}& \dots& \alpha_{1n}\\ \alpha_{21}& \alpha_{22}& \dots& \alpha_{2n}\\ \vdots& \vdots& \ddots & \vdots\\ \alpha_{m1}& \alpha_{m2}& \dots& \alpha_{mn} \end{bmatrix}, A= α11α21αm1α12α22αm2α1nα2nαmn , α i j ∈ R h × h ( i = 1 , 2 , … , m , j = 1 , 2 , … , n ) , \alpha_{ij}\in\mathbb{R}^{h\times h}\left (i=1,2,\dots,m,j=1,2,\dots,n\right ), αijRh×h(i=1,2,,m,j=1,2,,n), 及 : α i j = [ a 11 a 12 … a 1 h a 21 a 22 … a 2 h ⋮ ⋮ ⋱ ⋮ a h 1 a h 2 … a h h ] , 及:\alpha_{ij}=\begin{bmatrix} a_{11}& a_{12}& \dots& a_{1h}\\ a_{21}& a_{22}& \dots& a_{2h}\\ \vdots& \vdots& \ddots & \vdots\\ a_{h1}& a_{h2}& \dots& a_{hh} \end{bmatrix}, :αij= a11a21ah1a12a22ah2a1ha2hahh , B = [ β 11 β 12 … β 1 p β 21 β 22 … β 2 p ⋮ ⋮ ⋱ ⋮ β m 1 β m 2 … β m p ] , B=\begin{bmatrix} \beta_{11}& \beta_{12}& \dots& \beta_{1p}\\ \beta_{21}& \beta_{22}& \dots& \beta_{2p}\\ \vdots& \vdots& \ddots & \vdots\\ \beta_{m1}& \beta_{m2}& \dots& \beta_{mp} \end{bmatrix}, B= β11β21βm1β12β22βm2β1pβ2pβmp , β i j ∈ R l × l ( i = 1 , 2 , … , m , j = 1 , 2 , … , p ) , \beta_{ij}\in\mathbb{R}^{l\times l}\left (i=1,2,\dots,m,j=1,2,\dots,p\right ), βijRl×l(i=1,2,,m,j=1,2,,p), C = [ γ 11 γ 12 … γ 1 n γ 21 γ 22 … γ 2 n ⋮ ⋮ ⋱ ⋮ γ p 1 γ p 2 … γ p n ] , C=\begin{bmatrix} \gamma_{11}& \gamma_{12}& \dots& \gamma_{1n}\\ \gamma_{21}& \gamma_{22}& \dots& \gamma_{2n}\\ \vdots& \vdots& \ddots & \vdots\\ \gamma_{p1}& \gamma_{p2}& \dots& \gamma_{pn} \end{bmatrix}, C= γ11γ21γp1γ12γ22γp2γ1nγ2nγpn , γ i j ∈ R k × k ( i = 1 , 2 , … , p , j = 1 , 2 , … , n ) . \gamma_{ij}\in\mathbb{R}^{k\times k}\left (i=1,2,\dots,p,j=1,2,\dots,n\right ). γijRk×k(i=1,2,,p,j=1,2,,n). A 、 B 、 C 可视为元素类型为二维数组的二维数组 . A、B、C可视为元素类型为二维数组的二维数组. ABC可视为元素类型为二维数组的二维数组. 定义四维数组卷积运算 A = B ∗ C ( ∗ 包括 ∗ v a l i d 与 ∗ f u l l ) 为 : 定义四维数组卷积运算A=B*C(*包括*_{valid} 与*_{full})为: 定义四维数组卷积运算A=BC(包括validfull): [ β 11 β 12 … β 1 p β 21 β 22 … β 2 p ⋮ ⋮ ⋱ ⋮ β m 1 β m 2 … β m p ] ∗ [ γ 11 γ 12 … γ p n γ 21 γ 22 … γ p n ⋮ ⋮ ⋱ ⋮ γ p 1 γ p 2 … γ p n ] = \begin{bmatrix} \beta_{11}& \beta_{12}& \dots& \beta_{1p}\\ \beta_{21}& \beta_{22}& \dots& \beta_{2p}\\ \vdots& \vdots& \ddots & \vdots\\ \beta_{m1}& \beta_{m2}& \dots& \beta_{mp} \end{bmatrix} * \begin{bmatrix} \gamma_{11}& \gamma_{12}& \dots& \gamma_{pn}\\ \gamma_{21}& \gamma_{22}& \dots& \gamma_{pn}\\ \vdots& \vdots& \ddots & \vdots\\ \gamma_{p1}& \gamma_{p2}& \dots& \gamma_{pn} \end{bmatrix} = β11β21βm1β12β22βm2β1pβ2pβmp γ11γ21γp1γ12γ22γp2γpnγpnγpn = [ ∑ i = 1 p β 1 i ∗ γ i 1 ∑ i = 1 p β 1 i ∗ γ i 2 … ∑ i = 1 p β 1 i ∗ γ i n ∑ i = 1 p β 2 i ∗ γ i 1 ∑ i = 1 p β 2 i ∗ γ i 2 … ∑ i = 1 p β 2 i ∗ γ i n ⋮ ⋮ ⋱ ⋮ ∑ i = 1 p β m i ∗ γ i 1 ∑ i = 1 p β m i ∗ γ i 2 … ∑ i = 1 p β m i ∗ γ i n ] \begin{bmatrix} \sum_{i=1}^{p}\beta_{1i}*\gamma_{i1} & \sum_{i=1}^{p}\beta_{1i}*\gamma_{i2}& \dots & \sum_{i=1}^{p}\beta_{1i}*\gamma_{in}\\ \sum_{i=1}^{p}\beta_{2i}*\gamma_{i1} & \sum_{i=1}^{p}\beta_{2i}*\gamma_{i2}& \dots & \sum_{i=1}^{p}\beta_{2i}*\gamma_{in}\\ \vdots& \vdots& \ddots& \vdots\\ \sum_{i=1}^{p}\beta_{mi}*\gamma_{i1} & \sum_{i=1}^{p}\beta_{mi}*\gamma_{i2}& \dots & \sum_{i=1}^{p}\beta_{mi}*\gamma_{in} \end{bmatrix} i=1pβ1iγi1i=1pβ2iγi1i=1pβmiγi1i=1pβ1iγi2i=1pβ2iγi2i=1pβmiγi2i=1pβ1iγini=1pβ2iγini=1pβmiγin 例如 : [ a 11 a 12 a 21 a 22 ] ∗ [ b 11 b 12 b 21 b 22 ] = 例如:\begin{bmatrix} a_{11}& a_{12}\\ a_{21}& a_{22} \end{bmatrix}* \begin{bmatrix} b_{11}& b_{12}\\ b_{21}& b_{22} \end{bmatrix}= 例如:[a11a21a12a22][b11b21b12b22]= [ a 11 ∗ b 11 + a 12 ∗ b 21 a 11 ∗ b 12 + a 12 ∗ b 22 a 21 ∗ b 11 + a 22 ∗ b 21 a 21 ∗ b 12 + a 22 ∗ b 22 ] \begin{bmatrix} a_{11}*b_{11}+a_{12}*b_{21}& a_{11}*b_{12}+a_{12}*b_{22}\\ a_{21}*b_{11}+a_{22}*b_{21}& a_{21}*b_{12}+a_{22}*b_{22} \end{bmatrix} [a11b11+a12b21a21b11+a22b21a11b12+a12b22a21b12+a22b22]


  • 11.

对于四维数组 对于四维数组 对于四维数组 A = [ α 11 α 12 … α 1 n α 21 α 22 … α 2 n ⋮ ⋮ ⋱ ⋮ α m 1 α m 2 … α m n ] , 定义 : A=\begin{bmatrix} \alpha_{11}& \alpha_{12}& \dots& \alpha_{1n}\\ \alpha_{21}& \alpha_{22}& \dots& \alpha_{2n}\\ \vdots& \vdots& \ddots & \vdots\\ \alpha_{m1}& \alpha_{m2}& \dots& \alpha_{mn} \end{bmatrix},定义: A= α11α21αm1α12α22αm2α1nα2nαmn ,定义: A r t = [ ( α 11 ) r o t T ( α 12 ) r o t T … ( α 1 n ) r o t T ( α 21 ) r o t T ( α 22 ) r o t T … ( α 2 n ) r o t T ⋮ ⋮ ⋱ ⋮ ( α m 1 ) r o t T ( α m 2 ) r o t T … ( α m n ) r o t T ] A_{r}^{t}=\begin{bmatrix} \left(\alpha_{11}\right)_{rot}^{T}& \left(\alpha_{12}\right)_{rot}^{T}& \dots& \left(\alpha_{1n}\right)_{rot}^{T}\\ \left(\alpha_{21}\right)_{rot}^{T}& \left(\alpha_{22}\right)_{rot}^{T}& \dots& \left(\alpha_{2n}\right)_{rot}^{T}\\ \vdots& \vdots& \ddots & \vdots\\ \left(\alpha_{m1}\right)_{rot}^{T}& \left(\alpha_{m2}\right)_{rot}^{T}& \dots& \left(\alpha_{mn}\right)_{rot}^{T} \end{bmatrix} Art= (α11)rotT(α21)rotT(αm1)rotT(α12)rotT(α22)rotT(αm2)rotT(α1n)rotT(α2n)rotT(αmn)rotT


  • 12.

对于四维数组 对于四维数组 对于四维数组 A = [ α 11 α 12 … α 1 n α 21 α 22 … α 2 n ⋮ ⋮ ⋱ ⋮ α m 1 α m 2 … α m n ] , 定义 : A=\begin{bmatrix} \alpha_{11}& \alpha_{12}& \dots& \alpha_{1n}\\ \alpha_{21}& \alpha_{22}& \dots& \alpha_{2n}\\ \vdots& \vdots& \ddots & \vdots\\ \alpha_{m1}& \alpha_{m2}& \dots& \alpha_{mn} \end{bmatrix},定义: A= α11α21αm1α12α22αm2α1nα2nαmn ,定义: A T = [ α 11 T α 21 T … α m 1 T α 12 T α 22 T … α m 2 T ⋮ ⋮ ⋱ ⋮ α 1 n T α 2 n T … α m n T ] A^{T}=\begin{bmatrix} \alpha_{11}^{T}& \alpha_{21}^{T}& \dots& \alpha_{m1}^{T}\\ \alpha_{12}^{T}& \alpha_{22}^{T}& \dots& \alpha_{m2}^{T}\\ \vdots& \vdots& \ddots & \vdots\\ \alpha_{1n}^{T}& \alpha_{2n}^{T}& \dots& \alpha_{mn}^{T} \end{bmatrix} AT= α11Tα12Tα1nTα21Tα22Tα2nTαm1Tαm2TαmnT


  • 13.

t r ( A ⋅ ( B ∗ v a l i d C ) ) = t r ( ( A ∗ f u l l B r t ) ⋅ C ) = t r ( ( C r t ∗ v a l i d A ) ⋅ B ) tr\left(A\cdot \left(B*_{valid}C\right)\right)=tr\left(\left(A*_{full} B_{r}^{t}\right)\cdot C\right)=tr\left(\left(C_{r}^{t}*_{valid}A\right)\cdot B\right) tr(A(BvalidC))=tr((AfullBrt)C)=tr((CrtvalidA)B) A ∈ R n × m × k − l + 1 × k − l + 1 , B ∈ R m × p × l × l , C ∈ R p × n × k × k , 且 k ≥ l ≥ 2. A\in\mathbb{R}^{n\times m\times k-l+1\times k-l+1},B\in\mathbb{R}^{m\times p\times l\times l},C\in\mathbb{R}^{p\times n\times k\times k},且k\ge l\ge 2. ARn×m×kl+1×kl+1,BRm×p×l×l,CRp×n×k×k,kl2.


  • 14.

t r ( A ⋅ ( B ∗ f u l l C ) ) = t r ( ( A ∗ v a l i d B r t ) ⋅ C ) = t r ( ( C r t ∗ v a l i d A ) ⋅ B ) tr\left(A\cdot \left(B*_{full}C\right)\right)=tr\left(\left(A*_{valid} B_{r}^{t}\right)\cdot C\right)=tr\left(\left(C_{r}^{t}*_{valid}A\right)\cdot B\right) tr(A(BfullC))=tr((AvalidBrt)C)=tr((CrtvalidA)B) A ∈ R n × m × k + l − 1 × k + l − 1 , B ∈ R m × p × l × l , C ∈ R p × n × k × k , 且 k ≥ 2 , l ≥ 2. A\in\mathbb{R}^{n\times m\times k+l-1\times k+l-1},B\in\mathbb{R}^{m\times p\times l\times l},C\in\mathbb{R}^{p\times n\times k\times k},且k\ge 2,l\ge 2. ARn×m×k+l1×k+l1,BRm×p×l×l,CRp×n×k×k,k2,l2.


  • 15.

A , B 为四维数组 , 则 : A,B为四维数组,则: A,B为四维数组,: ( A ∗ B ) T = B T ∗ A T (A*B)^{T}=B^{T}*A^{T} (AB)T=BTAT


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值