OnnxRuntime TensorRT OpenCV::DNN性能对比(YoloV8)实测

1. 前言

之前把ORT的一套推理环境框架搭好了,在项目中也运行得非常愉快,实现了cpu/gpu,fp32/fp16的推理运算,同onnx通用模型在不同推理框架下的性能差异对比贴一下,记录一下自己对各种推理框架的学习状况

YoloV8模型大小
模型名称参数量
NANO3.2M
......

2. CPU篇

CPU推理框架性能比较
框架推理耗时(i5-11400H@2.70GHz)/ms
OnnxRuntime95
DNN80

 

3. GPU篇

说明一下,懒得编译OpenCV的CUDA版了.也是菜,不想编译qwq

GPU推理框架性能比较
框架推理耗时(RTX3050 LapTop)/ms
OnnxRuntime17
TensorRT6

 

4. 总结

cpu选择onnxruntime或者dnn都可以,建议选择ort.gpu选择tensorrt,如果有兼容需求就只能选择onnxruntime了.

不得不说,gpu推理上TRT把ORT薄纱了,不需要warm-up,对工业生产环境非常友好,因为在实际生产环境中,都不是实时推理,而是有间隔的推理,ORT在一段间隔时间后cuda性能会有所衰减,当然也可能是我还没摸透ort这个框架,欢迎大佬指正.

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值