Onnxruntime-CUDA版本对应

官方指出,由于CUDA的次要版本兼容性,使用CUDA11.4构建的ONNXRuntime可以与任何CUDA11.x版本配合使用,这意味着即使您的系统使用的是CUDA11.3,也能顺利运行ONNXRuntime1.14.1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ONNX RuntimeCUDAcuDNN
1.14
1.13.1
1.13
11.68.2.4 (Linux)
8.5.0.96 (Windows)
1.12
1.11
11.48.2.4 (Linux)
8.2.2.26 (Windows)
1.1011.48.2.4 (Linux)
8.2.2.26 (Windows)
1.911.48.2.4 (Linux)
8.2.2.26 (Windows)
1.811.0.38.0.4 (Linux)
8.0.2.39 (Windows)
1.711.0.38.0.4 (Linux)
8.0.2.39 (Windows)
1.5-1.610.28.0.3
1.2-1.410.17.6.5
1.0-1.110.07.6.4

这是官方提供的版本对应,我目前在维护的是1.14.1,工作电脑使用的是CUDA11.3,但官方显示支持的最低版本是是11.6,这里我就疑惑为什么我使用没有任何问题.知道发现官方附了一句话:

Note: Because of CUDA Minor Version Compatibility, Onnx Runtime built with CUDA 11.4 should be compatible with any CUDA 11.x version. Please reference Nvidia CUDA Minor Version Compatibility.

翻译一下就是

由于CUDA次要版本兼容性,使用CUDA 11.4构建的Onnx运行时应该与任何CUDA 11兼容x版本。

这里就明白了

ONNX Runtime ONNX Runtime GPU 是两个版本的推理引擎,分别针对 CPU GPU 环境进行了优化。为了确保最佳性能兼容性,应该使用相匹配的 ONNX 模型与相应版本ONNX RuntimeONNX Runtime GPU。 ### 版本对应关系 1. **保持一致的主要版本号**:通常推荐使用的 `onnxruntime` `onnxruntime-gpu` 应该拥有相同的主版本号(例如 1.x)。这是因为二者之间的次要版本更新通常是向后兼容的,但主要版本的不同可能导致 API 更改或功能差异。 2. **检查发布说明**:每个新发布的 ONNX Runtime 版本都会有详细的发布说明文档,在其中可以找到关于新增特性、修复漏洞等信息。对于某些特殊需求或者环境配置来说,查看具体的版本变更日志是很重要的。 3. **测试验证**:尽管理论上相同大版本下的 CPU GPU 实现应当完全兼容,但在实际应用中仍需经过充分测试以确认两者之间没有任何潜在的问题。特别是当你正在处理复杂的深度学习模型时更为关键。 #### 示例: 如果你打算安装最新的稳定版 ONNX Runtime,那么可以从官方网站下载对应的 `.whl` 文件来安装: ```bash pip install onnxruntime==1.14.0 # 安装适用于CPU的最新稳定版本 ``` 而对于支持 CUDA 的 GPU 加速,则应选择相应的 GPU 版本: ```bash pip install onnxruntime-gpu==1.14.0 # 安装适用于GPU的最新稳定版本 ``` 这里我们选择了相同的大版本 (`1.14`) 来保证一致性。 ### 相关注意事项 - 如果你在 Windows 上运行并且希望利用 Nvidia 显卡加速的话,请确保已正确安装了 CUDA Toolkit cuDNN。 - 使用 Anaconda 虚拟环境中进行开发也是一个不错的选择,它可以帮助隔离依赖项并简化管理流程。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值