【FinE】资本市场理论(2) APT模型

29 篇文章 8 订阅
29 篇文章 2 订阅

前文链接

资本市场理论模型(1)

因子模型

因子模型认为,各种证券的收益率均受到某个或者某些共同因素的影响,各个证券的相关性是因为均会对这些因素的变化产生反应.
模型符号表如下

字母含义
R i t R_{it} Rit证券 i i i t t t时刻的收益率
F t F_t Ft因素在 t t t时刻的预期值
b i b_i bi证券 i i i对因素的敏感度(因子载荷)
ε i t \varepsilon_{it} εit证券 i i i t t t时刻的收益率,假设为均值0,标准差为 σ ε i \sigma_{\varepsilon_i} σεi的随机变量
a i a_i ai常数,表示因素值为0时,证券 i i i的预期收益率

单因子模型

该模型认为证券收益率仅受到一种因素的影响,对于任意证券 i i i,其在 t t t时刻的单因素模型为
R i t = a i + b i F t + ε i t R_{it}=a_i+b_iF_t+\varepsilon_{it} Rit=ai+biFt+εit
方程两侧同时取期望,得到
E ( R i ) = a i + b i E ( F ) E(R_i)=a_i+b_iE(F) E(Ri)=ai+biE(F)
证券 i i i收益率的方差为
σ i 2 = b i 2 σ F 2 + σ ε i 2 \sigma_i^2=b_i^2\sigma_F^2+\sigma_{\varepsilon_i}^2 σi2=bi2σF2+σεi2
证券 i i i和证券 j j j的协方差为
σ i j = b i b j σ F 2 \sigma_{ij}=b_ib_j\sigma_F^2 σij=bibjσF2
证券组合方差为
σ p 2 = b p 2 σ F 2 + σ ε p 2 \sigma_p^2=b_p^2\sigma_F^2+\sigma_{\varepsilon_p}^2 σp2=bp2σF2+σεp2
其中
b p = ∑ i = 1 n w i b i σ ε p 2 = ∑ i = 1 n w i 2 b i 2 b_p=\sum_{i=1}^nw_ib_i\\ \sigma_{\varepsilon_p}^2=\sum_{i=1}^nw_i^2b_i^2 bp=i=1nwibiσεp2=i=1nwi2bi2

双因子模型

双因素模型中,证券收益率 R i t R_{it} Rit与两个因素有关,即
R i t = a i + b i 1 F 1 t + b i 2 F 2 t + ε i t 2 R_{it}=a_i+b_{i1}F_{1t}+b_{i2}F_{2t}+\varepsilon_{it}^2 Rit=ai+bi1F1t+bi2F2t+εit2
证券 i i i的预期收益率为
E ( R i ) = a i + b i 1 E ( F 1 ) + b i 2 E ( F 2 ) E(R_i)=a_i+b_{i1}E(F_1)+b_{i2}E(F_2) E(Ri)=ai+bi1E(F1)+bi2E(F2)
证券 i i i的收益率的方差为
σ i 2 = b i 1 2 σ F 1 2 + b i 2 2 σ F 2 2 + 2 b i 1 b i 2 c o v ( F 1 , F 2 ) + σ ε i 2 \sigma_i^2=b_{i1}^2\sigma_{F1}^2+b_{i2}^2\sigma_{F2}^2+2b_{i1}b_{i2}cov(F_1, F_2)+\sigma^2_{\varepsilon_i} σi2=bi12σF12+bi22σF22+2bi1bi2cov(F1,F2)+σεi2

多因子模型

k k k个因素对证券 i i i的收益率有影响
R i t = a i + b i 1 F 1 t + b i 2 F 2 t + ⋯ + b i k F k t + ε i t R_{it}=a_i+b_{i1}F_{1t}+b_{i2}F_{2t}+\dots+b_{ik}F_{kt}+\varepsilon_{it} Rit=ai+bi1F1t+bi2F2t++bikFkt+εit

套利原理

在因子模型中,所有相同敏感性的证券或者组合,将会以相同的方式变化,要求相同的预期回报率,否则会出现套利机会,套利者将会主动套利,使市场恢复均衡.

一价定律:同一种资产不可能在一个或 n n n个市场中以两种不同的价格出售,否则会出现套利.

套利组合

套利组合要求满足以下条件

  1. 自融资约束,套利组合要求投资者不追加资金,用 x i x_i xi表示权重,即有
    x 1 + x 2 + ⋯ + x n = 0 x_1+x_2+\dots+x_n=0 x1+x2++xn=0
  2. 套利组合对任何因素的敏感度为0,即不存在因素风险
    b k 1 x 1 + b k 2 x 2 + ⋯ + b k n x n = 0 b_{k1}x_1+b_{k2}x_2+\dots+b_{kn}x_n=0 bk1x1+bk2x2++bknxn=0
  3. 套利组合预期收益率为正
    x 1 E ( R 1 ) + x 2 E ( R 2 ) + ⋯ + x n E ( R n ) > 0 x_1E(R_1)+x_2E(R_2)+\dots+x_nE(R_n)>0 x1E(R1)+x2E(R2)++xnE(Rn)>0

套利定价模型

单因子套利定价模型
根据套利组合条件可以构建如下约束优化问题
max ⁡ E ( R p ) = x 1 E ( R 1 ) + x 2 E ( R 2 ) + ⋯ + x n E ( R n ) s . t . { x 1 + x 2 + ⋯ + x n = 0 b 1 x 1 + b 2 x 2 + ⋯ + b n x n = 0 \max E(R_p)=x_1E(R_1)+x_2E(R_2)+\dots+x_nE(R_n)\\ s.t. \begin{cases} &x_1+x_2+\dots+x_n=0\\ &b_1x_1+b_2x_2+\dots+b_nx_n=0 \end{cases} maxE(Rp)=x1E(R1)+x2E(R2)++xnE(Rn)s.t.{x1+x2++xn=0b1x1+b2x2++bnxn=0
根据拉格朗日乘数法建立增广目标函数 L L L
L = x 1 E ( R 1 ) + x 2 E ( R 2 ) + ⋯ + x n E ( R n ) − λ 0 ( x 1 + x 2 + ⋯ + x n ) − λ 1 ( b 1 x 1 + b 2 x 2 + ⋯ + b n x n ) L=x_1E(R_1)+x_2E(R_2)+\dots+x_nE(R_n)-\lambda_0(x_1+x_2+\dots+x_n)-\lambda_1(b_1x_1+b_2x_2+\dots+b_nx_n) L=x1E(R1)+x2E(R2)++xnE(Rn)λ0(x1+x2++xn)λ1(b1x1+b2x2++bnxn)
分别对 x i x_i xi λ j \lambda_j λj求导,可得
E ( R i ) = λ 0 + λ 1 b i E(R_i)=\lambda_0+\lambda_1b_i E(Ri)=λ0+λ1bi
考虑无风险资产 b i = 0 b_i=0 bi=0,可以知道 E ( R i ) = r = λ 0 E(R_i)=r=\lambda_0 E(Ri)=r=λ0.
考虑纯风险因子组合 p p p b p = 1 b_p=1 bp=1 λ 1 = E ( R p ) − r = δ 1 − r \lambda_1=E(R_p)-r=\delta_1-r λ1=E(Rp)r=δ1r.
多因素套利定价模型
k k k个因素下,套利定价模型为
E ( R i ) = λ 0 + λ 1 b i 1 + ⋯ + λ k b i k E(R_i)=\lambda_0+\lambda_1b_{i1}+\dots+\lambda_kb_{ik} E(Ri)=λ0+λ1bi1++λkbik
δ j \delta_j δj表示对第 j j j种因素的敏感度为1,而对其他因素的敏感度为0的证券资产组合的预期收益率,可以得到
E ( R i ) = r + ( δ 1 − r ) b i 1 + ( δ 2 − r ) b i 2 + ⋯ + ( δ k − r ) b i k E(R_i)=r+(\delta_1-r)b_{i1}+(\delta_2-r)b_{i2}+\dots+(\delta_k-r)b_{ik} E(Ri)=r+(δ1r)bi1+(δ2r)bi2++(δkr)bik
表示一种证券的预期收益率等于无风险利率加上 k k k个因素的风险报酬.

例题

问题1. 考虑单因素APT模型,资产a的 β \beta β值为1.0,期望收益率为16%,资产b的 β \beta β值为0.8,期望收益率为12%,无风险收益率为6%,求如何套利.
解析:考虑到资产b的 β \beta β值在资产a和无风险资产之间,因此使用资产a和无风险资产复制与资产b的 ∣ β ∣ |\beta| β的资产,设新组合c中资产a和无风险资产f的权重分别为 w 1 w_1 w1 w 2 w_2 w2,则有以下方程组成立
{ w 1 + w 2 = 1 1 ∗ w 1 + 0 ∗ w 2 = 0.8 \left\{ \begin{aligned} &w_1+w_2=1\\ &1*w_1+0*w_2=0.8 \end{aligned} \right. {w1+w2=11w1+0w2=0.8
解出 w 1 = 0.8 , w 2 = 0.2 w_1=0.8, w_2=0.2 w1=0.8,w2=0.2,资产组合 c c c的期望收益率为 0.8 ∗ 16 % + 0.2 ∗ 6 % = 14 % 0.8*16\%+0.2*6\%=14\% 0.816%+0.26%=14%. 做多资产组合c同时做空资产b,组合 β = 0.8 − 0.8 = 0 \beta=0.8-0.8=0 β=0.80.8=0,组合期望收益率为 14 % − 12 % = 2 % 14\%-12\%=2\% 14%12%=2%.

问题2. 假设市场指数是充分分散的投资组合,其期望收益率为10%,收益偏离期望的离差 r M − 10 % r_M-10\% rM10%可以看做系统风险,无风险利率为 4 % 4\% 4%,对于一个充分分散的投资组合 G G G,组合 β = 1 / 3 \beta=1/3 β=1/3,期望收益率为 5 % 5\% 5%,求套利策略.
解析:使用市场指数和无风险资产复制 G G G w 1 = 1 / 3 , w 2 = 2 / 3 w_1=1/3, w_2=2/3 w1=1/3,w2=2/3,期望收益率为
1 / 3 ∗ 10 % + 2 / 3 ∗ 4 % = 6 % > 5 % 1/3*10\%+2/3*4\%=6\%>5\% 1/310%+2/34%=6%>5%
因此可以沽出一份 G G G,同时做多复制组合,这样新组合的 β = 0 \beta=0 β=0,策略如下
卖出 G G G得到的现金投一份组合: 1 / 3 1/3 1/3投资于指数, 2 / 3 2/3 2/3投资于无风险资产,期望收益为
1 / 3 ∗ r M + 2 / 3 ∗ 4 % 1/3*r_M+2/3*4\% 1/3rM+2/34%
卖一份组合 G G G:期望收益为
− 1 ∗ [ 5 % + 1 / 3 ∗ ( r M − 10 % ) ] -1*[5\%+1/3*(r_M-10\%)] 1[5%+1/3(rM10%)]
总计收益为 6 % − 5 % = 1 % 6\%-5\%=1\% 6%5%=1%

APT与CAPM的一致性

对比单因子APT和CAPM方程
APT单因子方程
E ( r i ) = r f + ( δ 1 − r f ) b i E(r_i)=r_f+(\delta_1-r_f)b_i E(ri)=rf+(δ1rf)bi
CAPM方程
E ( r i ) = r f + ( E ( r M ) − r f ) β i E(r_i)=r_f+(E(r_M)-r_f)\beta_i E(ri)=rf+(E(rM)rf)βi
δ 1 ≠ E ( r M ) \delta_1\neq E(r_M) δ1=E(rM)时,资产 i i i的收益率
r i = E ( r i ) + b i F + e i r_i=E(r_i)+b_iF+e_i ri=E(ri)+biF+ei
资产 i i i和市场组合的协方差
c o v ( r i , r M ) = c o v ( E ( r i ) + b i F + e i , r M ) ≈ b i c o v ( F , r M ) cov(r_i, r_M)=cov(E(r_i)+b_iF+e_i, r_M)\approx b_icov(F, r_M) cov(ri,rM)=cov(E(ri)+biF+ei,rM)bicov(F,rM)
在CAPM模型中
β i = c o v ( r i , r M ) σ M 2 = b i c o v ( F , r M ) σ M 2 \beta_i=\frac{cov(r_i, r_M)}{\sigma^2_M}=\frac{b_icov(F, r_M)}{\sigma_M^2} βi=σM2cov(ri,rM)=σM2bicov(F,rM)
回代至CAPM方程
E ( r i ) = r f + ( E ( r M ) − r f ) × b i c o v ( F , r M ) σ M 2 E(r_i)=r_f+(E(r_M)-r_f)\times\frac{b_icov(F, r_M)}{\sigma_M^2} E(ri)=rf+(E(rM)rf)×σM2bicov(F,rM)
APT方程结构为
E ( r i ) = r f + λ 1 b i E(r_i)=r_f+\lambda_1b_i E(ri)=rf+λ1bi
反解 λ 1 \lambda_1 λ1得到
λ 1 = E ( r i ) − r f b i = ( E ( r M ) − r f ) c o v ( F , r M ) σ M 2 \lambda_1=\frac{E(r_i)-r_f}{b_i}=(E(r_M)-r_f)\frac{cov(F, r_M)}{\sigma_M^2} λ1=biE(ri)rf=(E(rM)rf)σM2cov(F,rM)
λ 1 \lambda_1 λ1的符号取决于 c o v ( F , r M ) cov(F, r_M) cov(F,rM).

考虑APT多因子模型
r i = E ( r i ) + b i 1 F 1 + b i 2 F 2 + ⋯ + b i k F k + e i r_i=E(r_i)+b_{i1}F_1+b_{i2}F_2+\dots+b_{ik}F_k+e_i ri=E(ri)+bi1F1+bi2F2++bikFk+ei
与单子模型步骤一致可以得到
λ j = ( E ( r M ) − r f ) c o v ( F j , r M ) σ M 2 \lambda_j=(E(r_M)-r_f)\frac{cov(F_j, r_M)}{\sigma_M^2} λj=(E(rM)rf)σM2cov(Fj,rM)
APT模型的假设条件比CAPM简单,但是要求证券收益率具有线性生成结构.

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

minuxAE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值