【OC】Pontryagin最大值原理

古典变分法

在控制向量 u ( t ) \mathbf{u}(t) u(t)不受限的情况下,变分法和最大值原理是等效的,但是当 u ( t ) \mathbf{u}(t) u(t)受限的情况下,最大值原理也是有效的,可以认为最大值原理是变分法的推广.
考虑一个 u ( t ) \mathbf{u}(t) u(t)受限制的例子
:一阶系统
x ˙ ( t ) = − x ( t ) + u ( t ) , x ( 0 ) = 1 \dot{x}(t)=-x(t)+u(t), x(0)=1 x˙(t)=x(t)+u(t),x(0)=1
其中 ∣ u ( t ) ∣ ≤ 1 |u(t)|\leq 1 u(t)1,求 u ( t ) u(t) u(t)使指标函数 J = ∫ 0 1 x ( t ) d t J=\int_0^1x(t)dt J=01x(t)dt有极小值。
解析:该问题为自由端问题,使用变分法求解,引入乘子 λ ( t ) \lambda(t) λ(t),构造哈密顿函数
H ( t ) = x ( t ) + λ ( t ) ( − x ( t ) + u ( t ) ) H(t)=x(t)+\lambda(t)(-x(t)+u(t)) H(t)=x(t)+λ(t)(x(t)+u(t))
伴随方程和边界条件为
λ ˙ ( t ) = − ∂ H ∂ x = λ ( t ) − 1 , λ ( 1 ) = 0 \dot{\lambda}(t)=-\frac{\partial H}{\partial x}=\lambda(t)-1, \lambda(1)=0 λ˙(t)=xH=λ(t)1,λ(1)=0
由极值必要条件
∂ H ∂ u = λ ( t ) = 0 \frac{\partial H}{\partial u}=\lambda(t)=0 uH=λ(t)=0
可以发现, λ = 0 \lambda=0 λ=0无法满足微分方程 λ ˙ = λ − 1 \dot\lambda=\lambda-1 λ˙=λ1,所以可知,极值存在边界上,导致变分法无效.
使用变分法求解最优控制,需要 H H H u \mathbf{u} u存在导数,但是如燃料控制问题
J = ∫ t 0 T ∑ j = 1 k ∣ u j ∣ d t J=\int_{t_0}^T\sum_{j=1}^k|u_j|dt J=t0Tj=1kujdt
无法满足导数存在的条件.

最大(小)值原理

泛函极值问题的必要条件为
min ⁡ u ∈ U H ( x , u , λ , t ) \min_{\bf{u}\in U}H(\pmb{x}, \pmb{u}, \pmb{\lambda}, t) uUminH(xxx,uuu,λλλ,t)
设函数 f ( x , u , t ) , φ ( x ( T ) , T ) f(\pmb{x}, \pmb{u}, t), \varphi(\pmb{x}(T), T) f(xxx,uuu,t),φ(xxx(T),T) L ( x , u , t ) L(\pmb{x}, \pmb{u}, t) L(xxx,uuu,t)对变元 x \pmb{x} xxx t t t连续,并且对 x \pmb{x} xxx t t t有一阶连续偏导数,容许控制 u ( t ) \pmb{u}(t) uuu(t)可以是连续分段函数,根据微分方程的理论可知,状态方程的解存在且唯一,并且是连续和分段可微分的.
定理(最小值原理):设 u ( t ) \pmb{u}(t) uuu(t)是容许控制, x ( t ) \pmb{x}(t) xxx(t)是对应的积分轨线,为了使 u ∗ ( t ) \pmb{u}^*(t) uuu(t)为最优控制, x ∗ ( t ) \pmb{x}^*(t) xxx(t)为最优轨线,必存在向量函数 λ ( t ) \pmb{\lambda}(t) λλλ(t),使得 x ∗ ( t ) \pmb{x}^*(t) xxx(t) λ ( t ) \pmb{\lambda}(t) λλλ(t)满足正则方程
{ x ˙ ( t ) = ∂ H ∂ λ λ ˙ ( t ) = − ∂ H ∂ x \left\{ \begin{aligned} &\dot{x}(t)=\frac{\partial H}{\partial \pmb{\lambda}}\\ &\dot\lambda(t)=-\frac{\partial H}{\partial \pmb{x}} \end{aligned} \right. x˙(t)=λλλHλ˙(t)=xxxH
H H H函数在任何时刻 t t t,相对于最优控制 u ∗ ( t ) \pmb{u}^*(t) uuu(t)存在最小值,即
min ⁡ u ∈ U H ( x ∗ ( t ) , λ ( t ) , u ( t ) , t ) = H ( x ∗ ( t ) , λ ( t ) , u ∗ ( t ) , t ) \min_{u\in U}H(x^*(t), \pmb{\lambda}(t), \pmb{u}(t), t)=H(\pmb{x}^*(t), \pmb{\lambda}(t), \pmb{u}^*(t), t) uUminH(x(t),λλλ(t),uuu(t),t)=H(xxx(t),λλλ(t),uuu(t),t)
最小值原理是最优控制所满足的必要条件,但是对于线性系统
x ˙ ( t ) = A ( t ) x ( t ) + B ( t ) u ( t ) \dot{x}(t)=A(t)x(t)+B(t)u(t) x˙(t)=A(t)x(t)+B(t)u(t)
其中
A ( t ) = [ a 11 ( t ) … a 1 n ( t ) ⋮ ⋱ ⋮ a n 1 ( t ) … a n n ( t ) ] B ( t ) = [ b 1 ( t ) ⋮ b n ( t ) ] A(t)=\left[ \begin{matrix} &a_{11}(t) & \dots & a_{1n}(t)\\ &\vdots &\ddots & \vdots\\ &a_{n1}(t) & \dots & a_{nn}(t) \end{matrix} \right]\quad B(t)=\left[ \begin{matrix} b_1(t)\\ \vdots\\ b_n(t) \end{matrix} \right] A(t)=a11(t)an1(t)a1n(t)ann(t)B(t)=b1(t)bn(t)
最小值原理也是使泛函 J J J取得最小值的充分条件.
例 1:同上例.
解析:引入乘子 λ ( t ) \lambda(t) λ(t)构造哈密顿函数
H = x ( t ) − λ ( t ) ( − x ( t ) + u ( t ) ) = ( 1 − λ ) x ( t ) + λ u ( t ) H=x(t)-\lambda(t)(-x(t)+u(t))=(1-\lambda)x(t)+\lambda u(t) H=x(t)λ(t)(x(t)+u(t))=(1λ)x(t)+λu(t)
得到伴随方程以及边界条件为
{ λ ˙ ( t ) = − ∂ H ∂ x = λ ( t ) − 1 λ ( 1 ) = 0 \left\{ \begin{aligned} &\dot{\lambda}(t)=-\frac{\partial H}{\partial x}=\lambda(t)-1\\ &\lambda(1)=0 \end{aligned} \right. λ˙(t)=xH=λ(t)1λ(1)=0
根据极小值原理,需要求出 H H H的极值,可控制项 λ u ( t ) \lambda u(t) λu(t)需要取值为负极值,所以 ∣ u ∣ |u| u取边界值
u = − s g n ( λ ) = { − 1 λ > 0 1 λ < 0 u=-sgn(\lambda)=\begin{cases} -1& \lambda>0\\ 1 &\lambda<0 \end{cases} u=sgn(λ)={11λ>0λ<0
根据伴随方程的解形式
λ ( t ) = 1 − exp ⁡ ( t − 1 ) > 0 , 0 ≤ t ≤ t \lambda(t)=1-\exp(t-1)>0, 0\leq t\leq t λ(t)=1exp(t1)>0,0tt
可知 λ ( t ) > 0 \lambda(t)>0 λ(t)>0, 所以 u ∗ ( t ) = − 1 u^*(t)=-1 u(t)=1,将 u ∗ ( t ) = − 1 u^*(t)=-1 u(t)=1代入状态方程得到
x ˙ ( t ) = − x ( t ) − 1 , x ( 0 ) = 1 \dot{x}(t)=-x(t)-1, x(0)=1 x˙(t)=x(t)1x(0)=1
通解形式为 x ( t ) = k 1 x − t + k 2 x(t)=k_1x^{-t}+k_2 x(t)=k1xt+k2,求解得到最优轨线为 x ∗ ( t ) = 2 e − t − 1 x^*(t)=2e^{-t}-1 x(t)=2et1,得到最优性能指标为
J ∗ = ∫ 0 1 x ∗ ( t ) d t = − 2 e − 1 + 1 J^*=\int_0^1x^*(t)dt=-2e^{-1}+1 J=01x(t)dt=2e1+1
可以得到协态变量和控制变量的关系如图所示
lu

例 2 设系统为
x ˙ = − x ( t ) + u ( t ) , x ( 0 ) = 1 \dot{x}=-x(t)+u(t), x(0)=1 x˙=x(t)+u(t),x(0)=1
控制向量约束为 ∣ u ( t ) ∣ ≤ 1 |u(t)|\leq 1 u(t)1,求控制 u ( t ) u(t) u(t)使得性能指标泛函
J = ∫ 0 1 ( x − 1 2 u ) d t J=\int_0^1(x-\frac{1}{2}u)dt J=01(x21u)dt
有极小值
解析:构造哈密顿函数
H = x − 1 2 u + λ ( − x + u ) = ( 1 − λ ) x + ( λ − 1 2 ) u H=x-\frac{1}{2}u+\lambda(-x+u)=(1-\lambda)x+(\lambda-\frac{1}{2})u H=x21u+λ(x+u)=(1λ)x+(λ21)u
伴随方程及边界条件为
{ λ ˙ ( t ) = − ∂ H ∂ x = λ − 1 λ ( 1 ) = 0 \left\{ \begin{aligned} &\dot{\lambda}(t)=-\frac{\partial H}{\partial x}=\lambda-1\\ &\lambda(1)=0 \end{aligned} \right. λ˙(t)=xH=λ1λ(1)=0
求解得到
λ ( t ) = − e t − 1 + 1 \lambda(t)=-e^{t-1}+1 λ(t)=et1+1
由最小值原理可以得到控制 u ( t ) u(t) u(t)
u = − s g n ( λ − 1 2 ) u=-sgn(\lambda-\frac{1}{2}) u=sgn(λ21)
求出 λ ( t ) − 1 2 \lambda(t)-\frac{1}{2} λ(t)21的零点为 t = ln ⁡ e 2 t=\ln\frac{e}{2} t=ln2e,可以得到
u ∗ ( t ) = { − 1 0 ≤ t ≤ ln ⁡ e 2 1 ln ⁡ e 2 < t ≤ 1 u^*(t)= \left\{ \begin{aligned} &-1 & 0\leq t\leq \ln\frac{e}{2}\\ &1 & \ln\frac{e}{2}<t\leq 1 \end{aligned} \right. u(t)=110tln2eln2e<t1
代入 u ∗ ( t ) u^*(t) u(t)到状态方程,得到
x ˙ = − x + u = { − x − 1 0 ≤ t ≤ ln ⁡ e 2 − x + 1 ln ⁡ e 2 < t ≤ 1 \dot{x}=-x+u=\left\{ \begin{aligned} &-x-1 & 0\leq t\leq \ln\frac{e}{2}\\ &-x+1 & \ln\frac{e}{2}<t\leq 1 \end{aligned} \right. x˙=x+u=x1x+10tln2eln2e<t1
求解微分方程,且根据在 t = ln ⁡ e 2 t=\ln\frac{e}{2} t=ln2e处连续得到
x ∗ ( t ) = { 2 e − t − 1 0 ≤ t ≤ ln ⁡ e 2 ( 2 − e ) e − t + 1 ln ⁡ e 2 < t ≤ 1 x^*(t)= \left\{ \begin{aligned} &2e^{-t}-1& 0\leq t\leq \ln\frac{e}{2}\\ &(2-e)e^{-t}+1 & \ln\frac{e}{2}<t\leq 1 \end{aligned} \right. x(t)=2et1(2e)et+10tln2eln2e<t1
lu2

变分法与最小值原理关系

u ( t ) u(t) u(t)无约束时,条件
min ⁡ u ∈ U H ( x ∗ , λ , u , t ) \min_{u\in U}H(x^*, \lambda, u, t) uUminH(x,λ,u,t)
等价于
∂ H ∂ u = 0 \frac{\partial H}{\partial u}=0 uH=0
且当 u u u不受限制时,伴随方程
λ ˙ ( t ) = − ∂ H ∂ x \dot{\lambda}(t)=-\frac{\partial H}{\partial x} λ˙(t)=xH
和极值条件
∂ H ∂ u = 0 \frac{\partial H}{\partial u}=0 uH=0
就是欧拉方程
∂ F ∂ x − d d t ∂ F ∂ x ˙ = 0 \frac{\partial F}{\partial x}-\frac{d}{dt}\frac{\partial F}{\partial \dot{x}}=0 xFdtdx˙F=0
证明过程见《现代控制理论(第二版)》Page 283.

参考资料

用庞特里亚金极小值原理求解二阶系统的最优控制问题
现代控制理论(第二版)清华大学出版社 张嗣瀛 高立群
控制学领域书单推荐
最优控制综述
动态优化–汉密尔顿函数(最优控制)和HJB方程(动态规划)
Geogebra使用
Geogebra数学 知乎专栏

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quant0xff

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值