HBOS算法-异常检测

57 篇文章 17 订阅
51 篇文章 6 订阅

背景

在网络安全领域,对异常检测算法的效率要求很高,且输入数据往往非常大,这也是为什么半监督学习的异常检测算法往往采用直方图的原因。如果处理的是高维数据,单维度的直方图很容易计算。大多数直方图相关的算法中,常常固定直方图的宽度或者手动设置宽度。

论文提出了一种基于直方图的无监督异常检测算法-HBOS算法,并且提出了动态宽度的算法以适应不均衡的长尾分布。论文《 Histogram-based Outlier Score (HBOS): A fast Unsupervised Anomaly Detection Algorithm 》下面是论文链接:

https://link.zhihu.com/?target=https%3A//pdfs.semanticscholar.org/5cf8/81d1db19834f123fcfc79ad32097aeafe17f.pdf

HBOS全名为:Histogram-based Outlier Score。它是一种单变量方法的组合,不能对特征之间的依赖关系进行建模,但是计算速度较快,对大数据集友好。其基本假设是数据集的每个维度相互独立。然后对每个维度进行区间(bin)划分,区间的密度越高,异常评分越低。

HBOS算法流程

1.为每个数据维度做出数据直方图。对分类数据统计每个值的频数并计算相对频率。对数值数据根据分
布的不同采用以下两种方法:

1.1静态宽度直方图:
标准的直方图构建方法,在值范围内使用k个等宽箱。样本落入每个桶的频率(相对数量)作为密度(箱子高度)的估计。
时间复杂度:O(n)

1.2.动态宽度直方图:
首先对所有值进行排序,然后固定数量的\frac{N}{k}个连续值装进一个箱里,其 中N是总实例数,k是箱个数;直方图中的箱面积表示实例数。因为箱的宽度是由箱中第一个值和最后一个值决定的,所有箱的面积都一样,因此每一个箱的高度都是可计算的。这意味着跨度大的箱的高度低,即密度小,只有一种情况例外,超过k个数相等,此时允许在同一个箱里超过\frac{N}{k}值。
时间复杂度:O(n*log(n))

2.对每个维度都计算了一个独立的直方图,其中每个箱子的高度表示密度的估计。然后为了使得最大高度为1(确保了每个特征与异常值得分的权重相等),对直方图进行归一化处理。最后,每一个实例的HBOS值由以下公式计算:

HBOS(p)=\sum_{i=0}^{d}log\left ( \frac{1}{hist_{i}(p)} \right )

# 导入相关依赖模块
from pyod.utils.data import evaluate_print,generate_data
from pyod.models.hbos import HBOS
from pyod.utils.example import visualize

# pyod中用于生成toy数据的方法主要是:
# 1、pyod.utils.data.generate_data()
# 2、pyod.utils.data.generate_data_clusters()

# 于是....生成toy example:
contamination = 0.05  # percentage of outliers
n_train = 1000  # number of training points
n_test = 500  # number of testing points
X_train, y_train, X_test, y_test = generate_data(n_train=n_train, n_test=n_test, contamination=contamination)

# 初始化HBOS模型
clf_name = 'HBOS'
clf = HBOS()
clf.fit(X_train)

# get the prediction labels and outlier scores of the training data
y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
y_train_scores = clf.decision_scores_  # raw outlier scores

# get the prediction on the test data
y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
y_test_scores = clf.decision_function(X_test)  # outlier scores

# evaluate and print the results
print("\nOn Training Data:")
evaluate_print(clf_name, y_train, y_train_scores)
print("\nOn Test Data:")
evaluate_print(clf_name, y_test, y_test_scores)

# 可视化展示训练集、测试集异常检测结果
visualize(clf_name, X_train, y_train, X_test, y_test, y_train_pred,
          y_test_pred, show_figure=False, save_figure=True)

初始化模型的方法中,4个参数分别表示:
1、n_bins:分箱的数量
2、alpha:用于防止边缘溢出的正则项
3、tol:用于设置当数据点落在箱子外时的宽容度
4、contamination:用于设置异常点的比例

根据可视化结果,来调整4个输入参数,直到得出更优参数。

  • n_bins设置得过大过小都容易误判。

优缺点:

HBOS在全局异常检测问题上表现良好,但不能检测局部异常值。但是HBOS比标准算法快得多,尤其是在大数据集上。

HBOS 单维效果极佳,但是标准差方法的mask 掩码效应严重。例如 数据 通常在100以内,但是有两个异常点,500,1000000。这个算法就不能检出500这个异常点。
对比而言,孤立森林理论上更适合大数据多维的异常检测,且无掩码效应。

与孤立森林对比:

# coding=utf-8

# 导入相关依赖模块
from pyod.utils.data import evaluate_print,generate_data
from pyod.models.hbos import HBOS
from pyod.utils.example import visualize
from sklearn.ensemble import IsolationForest
import numpy as np

# pyod中用于生成toy数据的方法主要是:
# 1、pyod.utils.data.generate_data()
# 2、pyod.utils.data.generate_data_clusters()
contamination = 0.05  # percentage of outliers
n_train = 1000  # number of training points
n_test = 500  # number of testing points
X_train, y_train, X_test, y_test = generate_data(n_train=n_train, n_test=n_test, contamination=contamination)
outliers_number = len([d for d in y_test if d == 1])
print("outliers_number", outliers_number)

# HBOS
clf_name = 'HBOS'
clf = HBOS(n_bins=10)
clf.fit(X_train)
y_test_pred_hbos = clf.predict(X_test)  # outlier labels (0 or 1)
outliers_hbos = [i for i in range(len(y_test_pred_hbos)) if y_test_pred_hbos[i] != y_test[i]]
print("outliers_hbos: ", outliers_hbos)
print(clf_name, len(outliers_hbos)/outliers_number)
# 错误率:0-0.2

# 孤立森林
rng = np.random.RandomState(42)
clf = IsolationForest(random_state=rng)
clf.fit(X_train)
y_test_pred_forest = clf.predict(X_test)  # outlier labels (0 or 1)
clf_name = "IsolationForest"
y_test_outliers = [i for i in range(len(y_test)) if y_test[i]>0]
outliers_forest = [y_test_pred_forest[i] for i in range(len(y_test_pred_forest)) if y_test_pred_forest[i] <0 and i not in y_test_outliers]
print("outliers_forest: ", outliers_forest)
print(clf_name, len(outliers_forest)/outliers_number)
# 错误率:0.8-1.4

参考:

  1. https://www.it610.com/article/1360269450086998016.htm
  2. https://blog.csdn.net/sirow/article/details/112692357
  3. https://zhuanlan.zhihu.com/p/84587517
  4. https://blog.csdn.net/ritatype/article/details/112679550
  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值