机器人环境感知算法发展概述

本文简述了机器人环境感知与SLAM(Simultaneous Localization And Mapping)算法的发展历程,分为经典阶段、算法分析阶段和鲁棒感知阶段。SLAM涉及激光雷达、视觉传感器等获取环境信息,构建地图并定位机器人。文章提供了原文PDF下载链接,便于深入学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  关注同名微信公众号“混沌无形”,阅读更多有趣好文!

原文链接 



机器人环境感知研究现状简述(包含原文PDF百度云下载链接)

环境感知与自主定位是运动规划的前端,机器人通过传感器(激光雷达、视觉传感器等)获取周围环境信息,构建临时局部环境地图,并同时求取机器人在该环境地图中的位姿,即SLAM算法所解决的问题。如图 2.1所示,SLAM算法相关研究于1986展开并延续至今,按照问题研究热点趋势,可分为三个阶段:经典阶段、算法分析阶段及鲁棒感知阶段[1],诸多研究成果被发表,SLAM系统相关研究日趋成熟,接下来依次概述不同阶段的算法研究情况。

 精彩的理论论证过程见原文链接(含全文下载链接)

由于网页排版效果一般,所以笔者按照期刊论文版式为小伙伴们整理了原文PDF,方便收藏和回味。

原文链接:(包含原文PDF百度云下载链接)
CSDN下载链接:机器人环境感知研究现状简述PDF

机器人环境感知研究现状简述正在上传…重新上传取消​https://mp.weixin.qq.com/s/Zd0IUibn5_Tsah3CFtjYrg如果喜欢的话,可以关注同名微信公众号“混沌无形”,阅读更多有趣好文!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

混沌无形

谢谢老板

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值