Spring AI教程(十八):评估AI响应与使用Spring CLI
在前面的文章中,我们探讨了Prompt模板、嵌入技术、函数调用和RAG技术。这篇文章将进一步讨论如何评估AI响应,并介绍如何使用Spring CLI创建和管理Spring AI项目。
评估AI响应
有效评估AI系统的输出是确保其质量和可靠性的关键步骤。以下是一些评估AI响应的方法和技术:
评估指标
- 相关性:AI响应与用户请求的相关程度。
- 连贯性:响应的逻辑和语言连贯性。
- 事实正确性:响应中的信息是否准确和真实。
评估方法
- 人工评估:通过人工评估AI的响应,可以判断其准确性和相关性。这种方法耗时但对于关键任务非常重要。
- 自动化评估:使用自动化工具和指标,如BLEU、ROUGE等,可以快速评估AI响应的质量,适合大规模的测试和评估。
- 用户反馈:收集用户反馈,了解AI响应的实际效果和改进空间,帮助开发者不断优化和改进AI模型。
示例:使用JUnit进行评估
Spring AI项目提供了一些基本的示例,展示如何在JUnit测试中包含Prompts来评估响应:
import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import com.example.springai.OpenAiChatService;
public class AiResponseEvaluationTest {
@Autowired
private OpenAiChatService openAiChatService;
@Test
public void testAiResponseRelevance() {
String prompt = "Tell me about the significance of the French Revolution.";
String response = openAiChatService.chat(prompt);
// 简单的相关性评估示例
assertTrue(response.contains("French Revolution"));
}
}
使用Spring CLI创建Spring AI应用
Spring CLI简化了直接从终端创建新应用程序的过程。类似于JavaScript生态系统中的create-react-app
命令,Spring CLI提供了spring boot new
命令来创建基于Spring的项目。Spring CLI还提供了许多其他生产力特性,包括将外部代码库集成到当前项目中。
开始使用Spring CLI
-
下载最新的Spring CLI版本
访问Spring CLI Release下载并安装最新版本的Spring CLI。
-
创建新项目
使用Spring CLI创建一个新的Spring AI项目:
spring boot new --name=spring-ai-application --dependencies=web,data-jpa,openai
-
添加Spring AI依赖
在
pom.xml
文件中添加Spring AI相关依赖:<dependency> <groupId>com.example</groupId> <artifactId>spring-ai</artifactId> <version>1.0.0</version> </dependency>
-
创建应用程序结构
使用Spring CLI创建基础项目结构和必要的类:
spring boot add class --name=com.example.springai.AiApplication spring boot add class --name=com.example.springai.controller.AiController spring boot add class --name=com.example.springai.service.AiService
-
实现基本功能
在
AiService
类中实现与AI模型的交互逻辑:package com.example.springai.service; import org.springframework.stereotype.Service; import com.example.springai.OpenAiChatService; @Service public class AiService { private final OpenAiChatService openAiChatService; public AiService(OpenAiChatService openAiChatService) { this.openAiChatService = openAiChatService; } public String getResponse(String prompt) { return openAiChatService.chat(prompt); } }
在
AiController
类中实现处理用户请求的控制器:package com.example.springai.controller; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.bind.annotation.RestController; import com.example.springai.service.AiService; @RestController public class AiController { @Autowired private AiService aiService; @GetMapping("/ai-response") public String getAiResponse(@RequestParam String prompt) { return aiService.getResponse(prompt); } }
结论
通过有效评估AI响应和使用Spring CLI创建Spring AI应用,你可以确保AI系统的质量和可靠性,同时提高开发效率。希望这篇文章能帮助你在实际项目中应用这些技术,并激发你更多的创意。
下一篇文章中,我们将继续探讨更多实际应用场景和高级功能,帮助你进一步掌握这一强大的工具。
Spring AI教程(十九):使用Spring CLI和Spring Initializr创建Spring AI应用
在前面的文章中,我们讨论了Prompt模板、嵌入技术、函数调用和RAG技术的应用。这篇文章将介绍如何使用Spring CLI和Spring Initializr创建和管理Spring AI项目。
使用Spring CLI创建Spring AI应用
Spring CLI简化了从终端创建新应用程序的过程。类似于JavaScript生态系统中的create-react-app
命令,Spring CLI提供了spring boot new
命令来创建基于Spring的项目。Spring CLI还提供了许多其他生产力特性,包括将外部代码库集成到当前项目中。
安装Spring CLI
-
下载最新的Spring CLI版本
访问Spring CLI Release下载并安装最新版本的Spring CLI。
-
安装指南
请参阅安装说明,根据操作系统配置环境变量或别名。
创建新项目
-
创建OpenAI应用
使用Spring CLI创建一个新的基于OpenAI的应用程序:
spring boot new --from ai --name myai
参考生成的
README.md
文件,获取OpenAI API Key并运行你的第一个AI应用程序。注意:目前Spring CLI仅支持Maven项目。
-
将AI应用添加到现有项目
如果你想将简单的AI应用添加到现有的Maven项目中,可以执行以下命令:
spring boot add ai
注意:Spring CLI允许用户定义自己的项目目录,定义可以创建或添加到现有代码库的项目。
使用Spring Initializr创建Spring AI应用
Spring Initializr是一个在线工具,帮助你快速创建Spring Boot项目。你可以选择所需的依赖项并生成项目结构。
创建新项目
-
访问Spring Initializr
访问Spring Initializr并选择你想要在新应用程序中使用的AI模型和向量存储。
-
配置项目
配置项目的基本信息,如Group、Artifact、名称和描述。选择构建工具(Maven或Gradle)和语言(Java、Kotlin或Groovy)。
-
选择依赖项
在依赖项中选择AI模型和向量存储。例如,选择OpenAI、Huggingface等。
-
生成项目
点击“Generate”按钮,下载生成的项目结构,并将其解压缩到你的工作目录中。
手动添加Spring AI依赖
如果你更喜欢手动添加依赖,可以按照以下步骤进行:
添加Milestone和Snapshot仓库
要使用Milestone和Snapshot版本,需要在构建文件中添加对Spring Milestone和/或Snapshot仓库的引用。
对于Maven项目,添加以下仓库定义:
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
<repository>
<id>spring-snapshots</id>
<name>Spring Snapshots</name>
<url>https://repo.spring.io/snapshot</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>
添加Spring AI依赖
在pom.xml
文件中添加Spring AI相关依赖:
<dependency>
<groupId>com.example</groupId>
<artifactId>spring-ai</artifactId>
<version>1.0.0</version>
</dependency>
结论
通过使用Spring CLI和Spring Initializr,你可以快速创建和管理Spring AI项目。这些工具不仅提高了开发效率,还提供了灵活性,帮助你根据需求定制项目结构和依赖配置。希望这篇文章能帮助你在实际项目中应用这些技术,并激发你更多的创意。
下一篇文章中,我们将继续探讨更多实际应用场景和高级功能,帮助你进一步掌握这一强大的工具。