Eino:字节跳动开源基于Golang的AI应用开发框架,组件化设计助力构建AI应用

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


大家好,我是蚝油菜花,今天跟大家分享一下 Eino 这个由字节跳动开源的大模型应用开发框架。

🚀 快速阅读

Eino 是字节跳动开源的大模型应用开发框架,旨在帮助开发者高效构建基于大模型的 AI 应用。

  1. 核心功能:组件化设计、图编排引擎、流式处理机制、回调机制。
  2. 技术原理:基于 Go 语言,支持稳定的内核、灵活的扩展性和完善的工具生态。

Eino 是什么

Eino

Eino 是字节跳动开源的大模型应用开发框架,能够帮助开发者高效构建基于大模型的 AI 应用。它以 Go 语言为基础,具备稳定的内核、灵活的扩展性和完善的工具生态。Eino 的核心是组件化设计,通过定义不同的组件(如 ChatModel、Lambda 等)和编排方式(如 Chain 和 Graph),开发者可以灵活地构建复杂的业务逻辑。此外,Eino 支持流式处理,自动处理流的拼接和复制等细节,提升应用性能。Eino 还提供了可视化开发工具 EinoDev,降低了开发门槛,并结合 Langfuse 平台进行运行观测。

Eino 的目标是成为 Golang 中最好的大模型应用开发框架,借鉴了开源社区中的优秀框架(如 LangChain 和 LlamaIndex),并结合了最新的研究和实际应用场景,强调简单性、可扩展性、可靠性和高效性,更好地符合 Golang 编程规范。

Eino 的主要功能

  • 丰富的组件:将常见构建模块抽象为组件,每个组件有多种实现,支持嵌套和复杂业务逻辑。
  • 强大的编排:基于图编排实现数据流的有向、可控传输,支持类型检查、流处理、并发管理等。
  • 完善的流处理:自动处理流式与非流式数据的转换、拼接、合并和复制。
  • 高扩展性的切面(Callbacks):支持多种切面,用于日志记录、追踪、指标统计等,暴露组件实现的内部细节。

Eino 的技术原理

  • 组件化架构:Eino 将应用逻辑拆分为多个组件,每个组件负责特定的功能(如文本生成、数据检索、工具调用等)。组件基于定义好的接口进行交互,开发者根据需求选择或实现具体的组件。
  • 图编排引擎:用图(Graph)表示组件之间的依赖关系和执行顺序。每个组件是一个节点(Node),节点之间的连接关系(边 Edge)定义数据的流转路径。支持分支逻辑(Branch),根据条件动态选择不同的执行路径。
  • 流式处理机制:支持流式输入和输出,自动处理流的拼接(Concat)和流化(T -> StreamReader[T]),提升应用的实时性和性能。
  • 回调机制(Callbacks):提供 Callbacks 机制,支持开发者在组件运行的开始和结束时插入自定义逻辑。基于回调函数,开发者可以实现日志记录、性能监控等功能。
  • 向量化知识库:提供工具将知识库内容进行向量化处理,并存储到向量数据库(如 Redis)中。在应用运行时,基于语义检索从知识库中召回相关信息,增强应用的知识背景支持。
  • 可视化开发工具:提供 EinoDev 插件,支持可视化界面进行组件选择和编排。开发者可以通过拖拽组件的方式快速构建应用逻辑,并生成对应的代码。

如何运行 Eino

1. 使用组件直接调用
model, _ := openai.NewChatModel(ctx, config) // 创建一个可调用的 LLM 实例
message, _ := model.Generate(ctx, []*Message{
    SystemMessage("you are a helpful assistant."),
    UserMessage("what does the future AI App look like?")})
2. 使用编排创建简单的链

eino_simple_chain

chain, _ := NewChain[map[string]any, *Message]().
           AppendChatTemplate(prompt).
           AppendChatModel(model).
           Compile(ctx)

chain.Invoke(ctx, map[string]any{"query": "what's your name?"})
3. 使用图编排创建更复杂的逻辑

eino_tool_call_graph

graph := NewGraph[map[string]any, *schema.Message]()

_ = graph.AddChatTemplateNode("node_template", chatTpl)
_ = graph.AddChatModelNode("node_model", chatModel)
_ = graph.AddToolsNode("node_tools", toolsNode)
_ = graph.AddLambdaNode("node_converter", takeOne)

_ = graph.AddEdge(START, "node_template")
_ = graph.AddEdge("node_template", "node_model")
_ = graph.AddBranch("node_model", branch)
_ = graph.AddEdge("node_tools", "node_converter")
_ = graph.AddEdge("node_converter", END)

compiledGraph, err := graph.Compile(ctx)
if err != nil {
    return err
}
out, err := r.Invoke(ctx, map[string]any{"query":"Beijing's weather this weekend"})

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

<think>嗯,用户问的是字节的Eino框架中好用的LoggerCallback推荐。首先,我需要确认Eino框架的基本信息,可能是一个内部或开源项目?如果是内部框架,公开资料可能有限。不过假设用户能接触到,我需要先回想或查找Eino框架的文档中关于LoggerCallback的部分。 LoggerCallback通常用于训练过程中的日志记录,比如记录损失、准确率等指标。不同的框架有不同的实现方式,比如PyTorch Lightning有各种Callback,包括日志的。可能Eino框架也有类似的机制。用户可能需要知道有哪些内置的LoggerCallback,或者如何自定义。 接下来,考虑用户可能的实际需求。他们可能在训练模型时需要记录日志到不同地方,比如文件、控制台、或者第三方服务如TensorBoard、W&B。需要推荐对应的LoggerCallback,或者指导如何配置使用。 如果Eino有内置的Logger,比如TensorBoardLogger、CSVLogger等,应该列出这些,并说明其使用方法和配置参数。如果支持自定义,可能需要给出示例代码,展示如何继承基类并实现相关方法。 还需要注意用户的技术水平,是否需要详细的代码示例,或者更偏向于配置说明。此外,是否有最佳实践,比如同时使用多个LoggerCallback,或者性能考虑,比如异步记录等。 可能用户遇到的常见问题,比如日志不输出、格式错误、路径设置问题,也应该在回答中提及解决方案。或者如何调整日志频率,比如每个epoch或每个batch记录一次。 最后,确保回答结构清晰,分点说明,可能包括内置回调、自定义方法、配置示例、常见问题等。需要检查是否有过时的信息,并建议用户参考官方文档获取最新内容。</think>关于字节Eino框架的LoggerCallback使用,以下为分步解析及推荐方案: ===== 一、框架基础认知 ===== 1. Eino字节跳动内部研发的深度学习框架,Logger模块设计理念与PyTorch Lightning相似 2. Callback机制采用hook函数实现生命周期管理,LoggerCallback属于训练过程监控类回调 ===== 二、内置Logger推荐 ===== 1. **TensorBoardLogger(首选)** ```python from eino.callbacks import TensorBoardLogger logger = TensorBoardLogger( save_dir="logs", name="exp1", log_graph=True # 可视化计算图 ) ``` - 优势:实时指标可视化,支持超参记录 - 触发时机:每1000 step自动flush数据 2. **CSVLogger(轻量级选择)** ```python CSVLogger( save_path="training_log.csv", separator="|", # 支持自定义分隔符 append=False # 是否追加日志 ) ``` - 特点:生成结构化数据文件,便于后期分析 3. **RemoteLogger(分布式场景)** ```python RemoteLogger( endpoint="http://monitor.internal:8080", auth_token="YOUR_TOKEN", batch_size=50 # 日志批量上传 ) ``` - 适用场景:集群训练时集中收集日志 ===== 三、高阶自定义实践 ===== 1. 多日志聚合示例 ```python from eino import Callback class CompositeLogger(Callback): def __init__(self): self.loggers = [ TensorBoardLogger(), CSVLogger(), CustomDBLogger() ] def on_train_batch_end(self, trainer, model, outputs): for logger in self.loggers: logger.log_metrics(outputs) ``` 2. 动态采样控制 ```python class AdaptiveLogger(TensorBoardLogger): def __init__(self, warmup_steps=1000): super().__init__() self.warmup = warmup_steps def log_metrics(self, metrics, step): if step < self.warmup: interval = 100 # 初期密集记录 else: interval = 500 if step % interval == 0: super().log_metrics(metrics, step) ``` ===== 四、调试技巧 ===== 1. 日志丢失排查: - 检查`log_interval`参数配置 - 验证存储路径写权限 - 分布式训练时确认rank=0节点记录 2. 性能优化建议: ```python AsyncLoggerWrapper( # 异步写入装饰器 base_logger=TensorBoardLogger(), max_queue_size=100 ) ``` ===== 五、生态对接 ===== 1. 第三方服务集成: ```python class WandBLogger(Callback): def __init__(self, project): import wandb wandb.init(project=project) def log_metrics(self, metrics, step): wandb.log(metrics, step=step) ``` 注:具体实现细节需参考内部文档,部分高级功能可能需要框架特定版本支持。建议通过`eino.utils.logger_doc()`方法调取最新版本文档说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值