24GB内存就能跑7B参数大模型?全新训练策略GaLore助你突破内存瓶颈

训练大型语言模型,内存总是个大问题。

权重啊、优化器状态啊,都得吃内存,而且吃得还不少。

为了省内存,有人就想出了一些招儿,比如低秩适应(LoRA),就是给预训练权重添点儿可训练的低秩矩阵,这样就能少训练点参数,优化器状态也省了。

冻结预训练模型的参数还能加速训练呢,因为只有新模型的参数在更新,其他的都保持不变。

不过啊,这些方法虽然能省内存,但效果可能没全秩权重训练那么好。

因为它们限制了参数搜索的空间,改变了训练的方式,有时候可能还需要全秩热身来启动一下。

最近有人提出了一种新的训练策略,叫梯度低秩投影(GaLore)。

这招儿能让全参数学习更省内存,效果还挺好。

在优化器状态方面,它能减少高达65.5%的内存使用量,而且性能还不打折。在LLaMA 1B和7B架构上都试过了,确实有效果。

现在你可以试试在24GB内存的GPU上预训练那个7B参数的模型了,说不定真的能跑起来哦!

https://arxiv.org/pdf/2403.03507.pdf
而且还不需要什么模型并行、检查点或卸载策略这些复杂的操作。

这不就是我们梦寐以求的“神器”吗?

不过啊,到底哪种预训练策略最好用呢?咱们一起来聊聊这些策略的使用过程吧。

内容迁移微信公众号:李孟聊AI
在这里插入图片描述

### LlamaFactory推理模型训练方法 LlamaFactory 的推理模型训练方法基于其三核心模块:Model Loader、Data Worker 和 Trainer。以下是关于训练方法的具体说明: #### 1. **模型加载与适配** LlamaFactory 使用 Model Loader 来管理不同类型的预训练模型,并通过构建一个模型注册表实现对模型的支持。该模块能够自动识别模型中的特定层并将适配器附加到这些层上,从而支持高效的微调操作[^1]。 #### 2. **数据处理与准备** 为了适应样化的数据集需求,LlamaFactory 提供了一种标准化的数据描述规范。这种规范使得 Data Worker 可以轻松地通过对齐相应列的方式收集和整理数据集。这种方法显著降低了数据预处理的工作量,并提高了灵活性。 此外,在实际应用中,通常会将数据划分为训练集和验证集。验证集的比例可以根据具体情况设置为总数据量的 10%-20%,以便更好地监控模型表现并调整超参数[^2]。 #### 3. **高效微调技术** Trainer 集成了先进的高效微调算法,例如 LoRA+、GaLore 和 BAdam。这些方法不仅独立于具体的任务,还可以通过简单替换默认组件的方式来启用。这极地简化了新方法的集成过程,并减少了资源开销[^3]。 #### 4. **强化学习与分布式训练** 对于更复杂的任务,如对话生成或指令跟随,LlamaFactory 支持 RLHF(Reinforcement Learning from Human Feedback)。它引入了一种创新性的模型共享机制,可以在不增加额外预训练模型的前提下完成整个 RLHF 流程。 在规模分布式环境中,LlamaFactory 还兼容 DeepSpeed 工具包。借 DeepSpeed 的数据并行性和 ZeRO 优化器功能,可以有效提升 GPU 利用率并缓解内存瓶颈问题。 --- ### 参数调优建议 针对 LlamaFactory 中涉及的主要参数,以下是一些推荐策略: - **Batch Size**: 增加 batch size 能够加速收敛速度,但在有限硬件条件下需权衡显存占用情况。 - **Learning Rate (LR)**: 初始化 LR 应较小,随后采用动态调度方式逐步增至最优值范围。 - **Validation Set Ratio**: 如前所述,依据项目规模选取适当比例划分验证子集有于评估泛化能力。 下面展示一段 Python 实现代码片段作为参考: ```python from llama_factory import Trainer, DataLoader # 定义配置文件路径 config_path = "./configs/finetune_config.json" # 加载自定义数据集 data_loader = DataLoader(config_path) # 创建 trainer 对象 trainer = Trainer( model_name="base_model", data_loader=data_loader, micro_batch_size=8, learning_rate=5e-5, validation_split_ratio=0.1 ) # 启动训练流程 trainer.train(num_epochs=10) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李孟聊人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值