详解PEFT库中LoRA源码

前言

  • GitHub项目地址Some-Paper-CN。本项目是译者在学习长时间序列预测、CV、NLP和机器学习过程中精读的一些论文,并对其进行了中文翻译。还有部分最佳示例教程
  • 如果有帮助到大家,请帮忙点亮Star,也是对译者莫大的鼓励,谢谢啦~
  • 本文代码已同步至项目Some-Paper-CN

准备工作

  • Github上下载PEFT最新源码,源码地址
  • 关键源码在项目文件夹src/peft下,我们可以在项目文件下新建一个Lora_demo.py文件,用于后期Debug,下面是我写的实例代码,用的Qwen/Qwen2-0.5B-Instruct模型,大家可以用任何自己熟悉的模型。
from pprint import pprint
from peft import LoraConfig, get_peft_model
from transformers import AutoModelForCausalLM, AutoConfig

lora_config = LoraConfig(
    task_type="CAUSAL_LM",
    target_modules=[
        "q_proj",
        "k_proj",
        "v_proj",
        "o_proj",
        "gate_proj",
        "up_proj",
        "down_proj",
    ],
    inference_mode=False,
    r=8,
    lora_alpha=32,
    lora_dropout=0.1,
)
config = AutoConfig.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
og_model = AutoModelForCausalLM.from_config(config)
pprint(og_model)
lora_model = get_peft_model(og_model, lora_config)
pprint(lora_model)

# pprint([key for key, _ in og_model.named_modules()])
# key = 'model.layers.0.self_attn.rotary_emb'
# pprint(og_model.get_submodule(".".join(key.split(".")[:-1])))
# pprint(key.split(".")[-1])
# pprint(og_model.get_submodule(key))

  • 后面我注释的是一些在Debug期间不是很好理解的代码,大家可以先不管,后面到对应的地方后我会提到。

  • 可以看到,在上面代码中,最关键的函数是get_peft_model(),当原始模型经过get_peft_model()函数后,模型结构中就加入了LoRA分支。

  • og_model模型结构

Qwen2ForCausalLM(
  (model): Qwen2Model(
    (embed_tokens): Embedding(151936, 896)
    (layers): ModuleList(
      (0-23): 24 x Qwen2DecoderLayer(
        (self_attn): Qwen2SdpaAttention(
          (q_proj): Linear(in_features=896, out_features=896, bias=True)
          (k_proj): Linear(in_features=896, out_features=128, bias=True)
          (v_proj): Linear(in_features=896, out_features=128, bias=True)
          (o_proj): Linear(in_features=896, out_features=896, bias=False)
          (rotary_emb): Qwen2RotaryEmbedding()
        )
        (mlp): Qwen2MLP(
          (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
          (up_proj): Linear(in_features=896, out_features=4864, bias=False)
          (down_proj): Linear(in_features=4864, out_features=896, bias=False)
          (act_fn): SiLU()
        )
        (input_layernorm): Qwen2RMSNorm()
        (post_attention_layernorm): Qwen2RMSNorm()
      )
    )
    (norm): Qwen2RMSNorm()
  )
  (lm_head): Linear(in_features=896, out_features=151936, bias=False)
)
  • lora_model模型架构
PeftModelForCausalLM(
  (base_model): LoraModel(
    (model): Qwen2ForCausalLM(
      (model): Qwen2Model(
        (embed_tokens): Embedding(151936, 896)
        (layers): ModuleList(
          (0-23): 24 x Qwen2DecoderLayer(
            (self_attn): Qwen2SdpaAttention(
              (q_proj): lora.Linear(
                (base_layer): Linear(in_features=896, out_features=896, bias=True)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.1, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=896, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=896, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (lora_magnitude_vector): ModuleDict()
              )
              (k_proj): lora.Linear(
                (base_layer): Linear(in_features=896, out_features=128, bias=True)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.1, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=896, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=128, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (lora_magnitude_vector): ModuleDict()
              )
              (v_proj): lora.Linear(
                (base_layer): Linear(in_features=896, out_features=128, bias=True)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.1, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=896, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=128, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (lora_magnitude_vector): ModuleDict()
              )
              (o_proj): lora.Linear(
                (base_layer): Linear(in_features=896, out_features=896, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.1, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=896, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=896, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (lora_magnitude_vector): ModuleDict()
              )
              (rotary_emb): Qwen2RotaryEmbedding()
            )
            (mlp): Qwen2MLP(
              (gate_proj): lora.Linear(
                (base_layer): Linear(in_features=896, out_features=4864, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.1, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=896, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=4864, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (lora_magnitude_vector): ModuleDict()
              )
              (up_proj): lora.Linear(
                (base_layer): Linear(in_features=896, out_features=4864, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.1, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=896, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=4864, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (lora_magnitude_vector): ModuleDict()
              )
              (down_proj): lora.Linear(
                (base_layer): Linear(in_features=4864, out_features=896, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.1, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=4864, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=896, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (lora_magnitude_vector): ModuleDict()
              )
              (act_fn): SiLU()
            )
            (input_layernorm): Qwen2RMSNorm()
            (post_attention_layernorm): Qwen2RMSNorm()
          )
        )
        (norm): Qwen2RMSNorm()
      )
      (lm_head): Linear(in_features=896, out_features=151936, bias=False)
    )
  )
)
  • 可以发现,lora_model对比og_model架构,多了很多以lora为前缀的层,如lora_Alora_Blora_embedding_Alora_embedding_B,那这些层是如何通过函数添加上的呢?按住Ctrl单机get_peft_model()查看底层源码。

源码详解

  • 因为一些代码规范的关系,PEFT内部的源码封装的非常厉害,在解析源码的时候要耐心一点,慢慢看,层级关系也千万要理清楚。

  • 进入get_peft_model函数,跳转到了peft/mapping.py文件,部分注释如下:

def get_peft_model(
    model: PreTrainedModel,
    peft_config: PeftConfig,
    adapter_name: str = "default",
    mixed: bool = False,
    autocast_adapter_dtype: bool = True,
    revision: Optional[str] = None,
) -> PeftModel | PeftMixedModel:
    # 读取模型参数文件
    model_config = getattr(model, "config", {"model_type": "custom"})
    # 将模型参数转换为dict格式
    if hasattr(model_config, "to_dict"):
        model_config = model_config.to_dict()

    # 读取微调配置
    peft_config.base_model_name_or_path = model.__dict__.get("name_or_path", None)

    if revision is not None:
        if peft_config.revision is not None and peft_config.revision != revision:
            warnings.warn(
                f"peft config has already set base model revision to {peft_config.revision}, overwriting with revision {revision}"
            )
        peft_config.revision = revision

    if mixed:
        # note: PeftMixedModel does not support autocast_adapter_dtype, so don't pass it
        return PeftMixedModel(model, peft_config, adapter_name=adapter_name)

    # 判断任务类型,以便进入对应的微调类
    if peft_config.task_type not in MODEL_TYPE_TO_PEFT_MODEL_MAPPING.keys() and not peft_config.is_prompt_learning:
        return PeftModel(model, peft_config, adapter_name=adapter_name, autocast_adapter_dtype=autocast_adapter_dtype)

    if peft_config.is_prompt_learning:
        peft_config = _prepare_prompt_learning_config(peft_config, model_config)
    return MODEL_TYPE_TO_PEFT_MODEL_MAPPING[peft_config.task_type](
        model, peft_config, adapter_name=adapter_name, autocast_adapter_dtype=autocast_adapter_dtype
    )
  • 不难发现get_peft_model()函数的作用是判断当前模型的任务类型,以便进入对应的微调类。在前面的lora_demo.py文件中,lora_config的参数task_type规定了模型类型为CAUSAL_LM因果语言模型,进入MODEL_TYPE_TO_PEFT_MODEL_MAPPING
MODEL_TYPE_TO_PEFT_MODEL_MAPPING: dict[str, type[PeftModel]] = {
    "SEQ_CLS": PeftModelForSequenceClassification,
    "SEQ_2_SEQ_LM": PeftModelForSeq2SeqLM,
    "CAUSAL_LM": PeftModelForCausalLM,
    "TOKEN_CLS": PeftModelForTokenClassification,
    "QUESTION_ANS": PeftModelForQuestionAnswering,
    "FEATURE_EXTRACTION": PeftModelForFeatureExtraction,
}
  • CAUSAL_LM对应的是PeftModelForCausalLM类,那我们继续进入PeftModelForCausalLM
  • 跳转到peft/peft_model.py文件,发现PeftModelForCausalLM类继承自PeftModel类,进入PeftModel类,我们主要关注PeftModel类的初始化方法,部分注释如下:
class PeftModel(PushToHubMixin, torch.nn.Module):
    def __init__(
        self,
        model: PreTrainedModel,
        peft_config: PeftConfig,
        adapter_name: str = "default",
        autocast_adapter_dtype: bool = True,
    ) -> None:
        super().__init__()
        self.modules_to_save = None
        self.active_adapter = adapter_name
        # 获取微调方法
        self.peft_type = peft_config.peft_type
        # These args are special PEFT arguments that users can pass. They need to be removed before passing them to
        # forward.
        self.special_peft_forward_args = {"adapter_names"}

        # 判断是否为提示词学习方法
        self._is_prompt_learning = peft_config.is_prompt_learning

        if self._is_prompt_learning:
            self._peft_config = {adapter_name: peft_config}
            self.base_model = model
            self.add_adapter(adapter_name, peft_config)
        else:
            self._peft_config = None
            # 获取微调方法类
            cls = PEFT_TYPE_TO_MODEL_MAPPING[peft_config.peft_type]
            # 实例化微调方法类
            self.base_model = cls(model, {adapter_name: peft_config}, adapter_name)
            self.set_additional_trainable_modules(peft_config, adapter_name)

        if hasattr(self.base_model, "_cast_adapter_dtype"):
            self.base_model._cast_adapter_dtype(
                adapter_name=adapter_name, autocast_adapter_dtype=autocast_adapter_dtype
            )

        if getattr(model, "is_gradient_checkpointing", True):
            model = self._prepare_model_for_gradient_checkpointing(model)

        # the `pretraining_tp` is set for some models to simulate Tensor Parallelism during inference to avoid
        # numerical differences, https://github.com/pytorch/pytorch/issues/76232 - to avoid any unexpected
        # behavior we disable that in this line.
        if hasattr(self.base_model, "config") and hasattr(self.base_model.config, "pretraining_tp"):
            self.base_model.config.pretraining_tp = 1
  • PeftModel类的作用是实例化对应的微调方法类,需要注意的是LoRA微调方法不属于提示词学习方法,要注意if self._is_prompt_learning判断结果,应该走else分支
  • 进入PEFT_TYPE_TO_MODEL_MAPPING
PEFT_TYPE_TO_MODEL_MAPPING = {
    PeftType.LORA: LoraModel,
    PeftType.LOHA: LoHaModel,
    PeftType.LOKR: LoKrModel,
    PeftType.PROMPT_TUNING: PromptEmbedding,
    PeftType.P_TUNING: PromptEncoder,
    PeftType.PREFIX_TUNING: PrefixEncoder,
    PeftType.ADALORA: AdaLoraModel,
    PeftType.BOFT: BOFTModel,
    PeftType.ADAPTION_PROMPT: AdaptionPromptModel,
    PeftType.IA3: IA3Model,
    PeftType.OFT: OFTModel,
    PeftType.POLY: PolyModel,
    PeftType.LN_TUNING: LNTuningModel,
    PeftType.VERA: VeraModel,
}
  • LoRA微调方法对应LoraModel类,进入LoraModel类,跳转到peft/tuners/lora/model.py文件,发现LoraModel类继承自BaseTuner类,那我们继续进入BaseTuner类,跳转到peft/tuners/tuners_utils.py文件。
  • 还是重点关注BaseTuner类的初始化方法,部分注释如下:
class BaseTuner(nn.Module, ABC):
    def __init__(self, model, peft_config: Union[PeftConfig, dict[str, PeftConfig]], adapter_name: str) -> None:
        super().__init__()

        self.model = model
        self.targeted_module_names: list[str] = []

        # For advanced developers, if you want to attach multiple adapters to your
        # model, just add a `peft_config` dict attribute to your model.
        if not hasattr(self, "peft_config"):
            self.peft_config = {adapter_name: peft_config} if isinstance(peft_config, PeftConfig) else peft_config
        else:
            logger.info(
                "Already found a `peft_config` attribute in the model. This will lead to having multiple adapters"
                " in the model. Make sure to know what you are doing!"
            )
            if isinstance(peft_config, PeftConfig):
                self.peft_config[adapter_name] = peft_config
            else:
                # user is adding a dict of PeftConfigs
                self.peft_config.update(peft_config)

        self.active_adapter: str | list[str] = adapter_name
        self._pre_injection_hook(self.model, self.peft_config[adapter_name], adapter_name)
        # 插入Adapter模块
        self.inject_adapter(self.model, adapter_name)

        # Copy the peft_config in the injected model.
        self.model.peft_config = self.peft_config
  • 上面初始化方法有一些指标记录和信息输出的代码,最关键的函数是inject_adapter(),即插入Adapter模块,进入inject_adapter()函数中
  • inject_adapter()函数仍然在peft/tuners/tuners_utils.py文件中,部分注释如下
    def inject_adapter(self, model: nn.Module, adapter_name: str, autocast_adapter_dtype: bool = True) -> None:
        # 读取配置文件
        peft_config = self.peft_config[adapter_name]
        self._check_new_adapter_config(peft_config)

        _check_for_modules_to_save = getattr(peft_config, "modules_to_save", None) is not None
        _has_modules_to_save = False

        model_config = getattr(model, "config", {"model_type": "custom"})
        if hasattr(model_config, "to_dict"):
            model_config = model_config.to_dict()

        peft_config = self._prepare_adapter_config(peft_config, model_config)

        self._prepare_model(peft_config, model)
        is_target_modules_in_base_model = False

        # 存储模型每一层的名字
        key_list = [key for key, _ in model.named_modules()]

        # update peft_config.target_modules if required
        peft_config = _maybe_include_all_linear_layers(peft_config, model)

        for key in key_list:
            # Check for modules_to_save in case
            if _check_for_modules_to_save and any(
                key.endswith(f"{module_to_save}") for module_to_save in peft_config.modules_to_save
            ):
                # Optionally set the modules to save
                parent, target, target_name = _get_submodules(model, key)

                if not isinstance(target, ModulesToSaveWrapper):
                    new_module = ModulesToSaveWrapper(target, adapter_name)
                    setattr(parent, target_name, new_module)
                else:
                    target.update(adapter_name)

                _has_modules_to_save = True
                continue

            if not self._check_target_module_exists(peft_config, key):
                continue

            self.targeted_module_names.append(key)
            is_target_modules_in_base_model = True

            # 获取当前层的父模块类,层名,层名对应的模块类
            parent, target, target_name = _get_submodules(model, key)
            # 创建层替代原本的层
            self._create_and_replace(peft_config, adapter_name, target, target_name, parent, current_key=key)

        if not is_target_modules_in_base_model:
            raise ValueError(
                f"Target modules {peft_config.target_modules} not found in the base model. "
                f"Please check the target modules and try again."
            )
        self.set_adapter(self.active_adapters)
        self._mark_only_adapters_as_trainable(model)

        if self.peft_config[adapter_name].inference_mode:
            for n, p in model.named_parameters():
                if adapter_name in n:
                    p.requires_grad = False

        if _has_modules_to_save:
            if not hasattr(model, "modules_to_save"):
                model.modules_to_save = set(peft_config.modules_to_save)
            else:
                model.modules_to_save.update(set(peft_config.modules_to_save))
  • inject_adapter()函数的关键行为是用key_list存储了模型每一层的名字,可以在前面我们写的lora_demo.py文件中打印出来。
pprint([key for key, _ in og_model.named_modules()])

输出如下,因为后面都是重复的模块,这里只截取了第0个模块的各个层

['',
 'model',
 'model.embed_tokens',
 'model.layers',
 'model.layers.0',
 'model.layers.0.self_attn',
 'model.layers.0.self_attn.q_proj',
 'model.layers.0.self_attn.k_proj',
 'model.layers.0.self_attn.v_proj',
 'model.layers.0.self_attn.o_proj',
 'model.layers.0.self_attn.rotary_emb',
 'model.layers.0.mlp',
 'model.layers.0.mlp.gate_proj',
 'model.layers.0.mlp.up_proj',
 'model.layers.0.mlp.down_proj',
 'model.layers.0.mlp.act_fn',
 'model.layers.0.input_layernorm',
 'model.layers.0.post_attention_layernorm',
 ...
  • 接着通过遍历key_list获取当前层的父模块类,层名,层名对应的模块类。比较重要的函数是_get_submodules(),点击_get_submodules()函数,跳转到peft/utils/other.py文件,看看是如何实现的。
def _get_submodules(model, key):
    parent = model.get_submodule(".".join(key.split(".")[:-1]))
    target_name = key.split(".")[-1]
    target = model.get_submodule(key)
    return parent, target, target_name
  • 这个函数可以在前面我们写的lora_demo.py文件中打印出来。随便选一个key,比如model.layers.0.self_attn.rotary_emb
key = 'model.layers.0.self_attn.rotary_emb'
pprint(og_model.get_submodule(".".join(key.split(".")[:-1])))
pprint(key.split(".")[-1])
pprint(og_model.get_submodule(key))

得到的输出如下:

    """
    key = model.layers.0.self_attn.rotary_emb
    parent = Qwen2SdpaAttention(
    (q_proj): Linear(in_features=896, out_features=896, bias=True)
    (k_proj): Linear(in_features=896, out_features=128, bias=True)
    (v_proj): Linear(in_features=896, out_features=128, bias=True)
    (o_proj): Linear(in_features=896, out_features=896, bias=False)
    (rotary_emb): Qwen2RotaryEmbedding()
    )
    target_name = 'rotary_emb'
    target = Qwen2RotaryEmbedding()
    """
  • 我们回到peft/tuners/tuners_utils.py文件中,继续看inject_adapter()函数,另一个关键函数是_create_and_replace()函数,我们点击_create_and_replace()函数,其与inject_adapter()函数在一个文件中,但是_create_and_replace()函数是一个抽象函数,我们需要回到peft/tuners/lora/model.py文件,LoraModel类中搜索_create_and_replace()函数查看具体实现。
    def _create_and_replace(
        self,
        lora_config,
        adapter_name,
        target,
        target_name,
        parent,
        current_key,
    ):
        if current_key is None:
            raise ValueError("Current Key shouldn't be `None`")

        # Regexp 匹配 - 在提供的模式中查找与当前目标名称匹配的键值
        pattern_keys = list(chain(lora_config.rank_pattern.keys(), lora_config.alpha_pattern.keys()))
        target_name_key = next(filter(lambda key: re.match(rf".*\.{key}$", current_key), pattern_keys), current_key)
        # 获取r和alpha参数
        r = lora_config.rank_pattern.get(target_name_key, lora_config.r)
        alpha = lora_config.alpha_pattern.get(target_name_key, lora_config.lora_alpha)

        kwargs = {
            "r": r,
            "lora_alpha": alpha,
            "lora_dropout": lora_config.lora_dropout,
            "fan_in_fan_out": lora_config.fan_in_fan_out,
            "init_lora_weights": lora_config.init_lora_weights,
            "use_rslora": lora_config.use_rslora,
            "use_dora": lora_config.use_dora,
            "loaded_in_8bit": getattr(self.model, "is_loaded_in_8bit", False),
            "loaded_in_4bit": getattr(self.model, "is_loaded_in_4bit", False),
        }

        quant_methods = ["gptq", "aqlm", "awq"]
        for quant_method in quant_methods:
            quantization_config = get_quantization_config(self.model, method=quant_method)
            if quantization_config is not None:
                kwargs[f"{quant_method}_quantization_config"] = quantization_config

        # note: AdaLoraLayer is a subclass of LoraLayer, we need to exclude it
        from peft.tuners.adalora import AdaLoraLayer
		
        # 当前传入的模型还是原始的基于nn.module的模型,所以不属于LoraLayer或Adaloralayer
        # 应该走else
        if isinstance(target, LoraLayer) and not isinstance(target, AdaLoraLayer):
            target.update_layer(
                adapter_name,
                r,
                lora_alpha=alpha,
                lora_dropout=lora_config.lora_dropout,
                init_lora_weights=lora_config.init_lora_weights,
                use_rslora=lora_config.use_rslora,
                use_dora=lora_config.use_dora,
            )
        else:
			# 根据LoRA关键参数创建新的模型
            new_module = self._create_new_module(lora_config, adapter_name, target, **kwargs)
            if adapter_name not in self.active_adapters:
                # adding an additional adapter: it is not automatically trainable
                new_module.requires_grad_(False)
            self._replace_module(parent, target_name, new_module, target)
  • _create_and_replace()函数在获取了LoRA微调的关键参数ralpha后,使用_create_new_module()函数创建新的模型架构。
  • 需要注意的是,现在传入该函数的模型是原始的,基于torch.nn.module的模型,不属于LoraLayer或者AdaLoraLayer类型,应该要走下面的else分支。
  • 进入_create_new_module()函数,与_create_and_replace()函数在同一文件下,
    def _create_new_module(lora_config, adapter_name, target, **kwargs):
        dispatchers = []

        if lora_config._custom_modules:
            def dynamic_dispatch_func(target, adapter_name, lora_config, **kwargs):
                new_module = None

                if isinstance(target, BaseTunerLayer):
                    target_base_layer = target.get_base_layer()
                else:
                    target_base_layer = target

                for key, custom_cls in lora_config._custom_modules.items():
                    if isinstance(target_base_layer, key):
                        new_module = custom_cls(target, adapter_name, **kwargs)
                        break

                return new_module

            dispatchers.append(dynamic_dispatch_func)

        # avoid eager bnb import
        if is_bnb_available():
            from .bnb import dispatch_bnb_8bit

            dispatchers.append(dispatch_bnb_8bit)

        if is_bnb_4bit_available():
            from .bnb import dispatch_bnb_4bit

            dispatchers.append(dispatch_bnb_4bit)

        dispatchers.extend(
            [
                dispatch_eetq,
                dispatch_aqlm,
                dispatch_awq,
                dispatch_gptq,
                dispatch_hqq,
                dispatch_megatron,
                dispatch_default,
            ]
        )

        new_module = None
        for dispatcher in dispatchers:
            new_module = dispatcher(target, adapter_name, lora_config=lora_config, **kwargs)
            if new_module is not None:  # first match wins
                break

        if new_module is None:
            # no module could be matched
            raise ValueError(
                f"Target module {target} is not supported. Currently, only the following modules are supported: "
                "`torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv2d`, `transformers.pytorch_utils.Conv1D`."
            )

        return new_module
  • 上面函数提到的awqgptqhqq都是不同的模型量化或部署格式,一般我们微调选择的都是非量化版本,所以最后都会走dispatch_default分支,但是我们也可以看看其他的分支,这里以dispatch_eetq()函数为例,点击跳转到peft/tuners/lora/eetq.py文件
def dispatch_eetq(
    target: torch.nn.Module,
    adapter_name: str,
    **kwargs: Any,
) -> Optional[torch.nn.Module]:
    new_module = None

    if isinstance(target, BaseTunerLayer):
        target_base_layer = target.get_base_layer()
    else:
        target_base_layer = target

    if is_eetq_available() and isinstance(target_base_layer, EetqLinear):
        new_module = EetqLoraLinear(target, adapter_name, **kwargs)
        target.weight = target_base_layer.weight

        if hasattr(target, "bias"):
            target.bias = target_base_layer.bias

    return new_module
  • 函数先初始化了new_moduleNone,但是由于is_eetq_available()isinstance(target_base_layer, EetqLinear)均为False,最后的new_module仍然为None
  • 回到peft/tuners/lora/model.py文件下的_create_new_module()函数,点击dispatch_default,跳转到peft/tuners/lora/layer.py文件下的dispatch_default()函数,部分注释如下。
def dispatch_default(
    target: torch.nn.Module,
    adapter_name: str,
    lora_config: LoraConfig,
    **kwargs,
) -> Optional[torch.nn.Module]:
    new_module = None

    if isinstance(target, BaseTunerLayer):
        target_base_layer = target.get_base_layer()
    else:
        target_base_layer = target

    # 更新Embedding层
    if isinstance(target_base_layer, torch.nn.Embedding):
        embedding_kwargs = kwargs.copy()
        embedding_kwargs.pop("fan_in_fan_out", None)
        embedding_kwargs.update(lora_config.loftq_config)
        new_module = Embedding(target, adapter_name, **embedding_kwargs)
    # 更新Conv2d层
    elif isinstance(target_base_layer, torch.nn.Conv2d):
        kwargs.update(lora_config.loftq_config)
        new_module = Conv2d(target, adapter_name, **kwargs)
    # 更新Linear层
    elif isinstance(target_base_layer, torch.nn.Linear):
        if kwargs["fan_in_fan_out"]:
            warnings.warn(
                "fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. "
                "Setting fan_in_fan_out to False."
            )
            kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False
        kwargs.update(lora_config.loftq_config)
        new_module = Linear(target, adapter_name, **kwargs)
    # 更新Conv1D层
    elif isinstance(target_base_layer, Conv1D):
        if not kwargs["fan_in_fan_out"]:
            warnings.warn(
                "fan_in_fan_out is set to False but the target module is `Conv1D`. " "Setting fan_in_fan_out to True."
            )
            kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = True
        kwargs.update(lora_config.loftq_config)
        new_module = Linear(target, adapter_name, is_target_conv_1d_layer=True, **kwargs)

    return new_module
  • 可以看到LoRA微调方法主要是针对EmbeddingConv1DConv2DLinear层,这里我们以Linear为例进行讲解。
  • 进入isinstance(target_base_layer, torch.nn.Linear)分支下的new_module = Linear(target, adapter_name, **kwargs),点击LinearLinear类与dispatch_default()函数处于同一文件。
class Linear(nn.Module, LoraLayer):
    def __init__(
        self,
        base_layer,
        adapter_name: str,
        r: int = 0,
        lora_alpha: int = 1,
        lora_dropout: float = 0.0,
        fan_in_fan_out: bool = False,  
        is_target_conv_1d_layer: bool = False,
        init_lora_weights: Union[bool, str] = True,
        use_rslora: bool = False,
        use_dora: bool = False,
        **kwargs,
    ) -> None:
        super().__init__()
        LoraLayer.__init__(self, base_layer, **kwargs)
        self.fan_in_fan_out = fan_in_fan_out

        self._active_adapter = adapter_name
        self.update_layer(
            adapter_name,
            r,
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            init_lora_weights=init_lora_weights,
            use_rslora=use_rslora,
            use_dora=use_dora,
        )
        self.is_target_conv_1d_layer = is_target_conv_1d_layer
  • 可以看到Linear类除了继承nn.Module类,还继承了LoraLayer类,我们先看LoraLayer类,点击进入与Linear类同一文件的LoraLayer类,主要关注LoraLayer类的初始化方法
class LoraLayer(BaseTunerLayer):
    adapter_layer_names = ("lora_A", "lora_B", "lora_embedding_A", "lora_embedding_B")
    other_param_names = ("r", "lora_alpha", "scaling", "lora_dropout")

    def __init__(self, base_layer: nn.Module, **kwargs) -> None:
        self.base_layer = base_layer
        self.r = {}
        self.lora_alpha = {}
        self.scaling = {}
        self.lora_dropout = nn.ModuleDict({})
        self.lora_A = nn.ModuleDict({})
        self.lora_B = nn.ModuleDict({})
        self.lora_embedding_A = nn.ParameterDict({})
        self.lora_embedding_B = nn.ParameterDict({})
        self._disable_adapters = False
        self.merged_adapters = []
        self.use_dora: dict[str, bool] = {}
        self.lora_magnitude_vector = torch.nn.ModuleDict()  # for DoRA
        self._caches: dict[str, Any] = {}
        self.kwargs = kwargs

        base_layer = self.get_base_layer()
        # 获取输入输出维度
        if isinstance(base_layer, nn.Linear):
            in_features, out_features = base_layer.in_features, base_layer.out_features
        elif isinstance(base_layer, nn.Conv2d):
            in_features, out_features = base_layer.in_channels, base_layer.out_channels
        elif isinstance(base_layer, nn.Embedding):
            in_features, out_features = base_layer.num_embeddings, base_layer.embedding_dim
        elif isinstance(base_layer, Conv1D):
            in_features, out_features = (
                base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape
            )
        elif hasattr(base_layer, "infeatures") and hasattr(base_layer, "outfeatures"):
            in_features, out_features = base_layer.infeatures, base_layer.outfeatures
        elif hasattr(base_layer, "input_size") and hasattr(base_layer, "output_size"):
            in_features, out_features = base_layer.input_size, base_layer.output_size
        elif hasattr(base_layer, "codebooks") and base_layer.__class__.__name__ == "QuantizedLinear":
            in_features, out_features = base_layer.in_features, base_layer.out_features
        elif hasattr(base_layer, "w_bit") and base_layer.__class__.__name__ == "WQLinear_GEMM":
            in_features, out_features = base_layer.in_features, base_layer.out_features
        elif base_layer.__class__.__name__ == "EetqLinear":
            in_features, out_features = base_layer.in_features, base_layer.out_features
        elif hasattr(base_layer, "W_q") and base_layer.__class__.__name__ == "HQQLinear":
            in_features, out_features = base_layer.in_features, base_layer.out_features
        else:
            if hasattr(base_layer, "in_features") and hasattr(base_layer, "out_features"):
                in_features, out_features = base_layer.in_features, base_layer.out_features
            else:
                in_features, out_features = None, None
            warnings.warn(
                f"Unsupported layer type '{type(base_layer)}' encountered, proceed at your own risk.", UserWarning
            )

        self.in_features = in_features
        self.out_features = out_features
  • LoraLayer类的初始化方法关键行为在于获取可调节层(EmbeddingConv1DConv2DLinear)的输入输出维度,方便构造新的层。
  • 我们回到Linear类中,Linear类的初始化中另外一个关键方法是update_layer(),点击进入update_layer()函数中。
  • 到这里我终于可以把LoRA微调方法的经典原理图放上来了。
    请添加图片描述
    def update_layer(
        self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora, use_dora: bool = False
    ):
        # This code works for linear layers, override for other layer types
        if r <= 0:
            raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")

        # 读取r、alpha参数
        self.r[adapter_name] = r
        self.lora_alpha[adapter_name] = lora_alpha
        # 如果存在dropout参数则加入Dropout层
        if lora_dropout > 0.0:
            lora_dropout_layer = nn.Dropout(p=lora_dropout)
        else:
            lora_dropout_layer = nn.Identity()

        # 在lora_dropout中加入lora_dropout_layer
        self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer}))
        # 实际可训练参数,矩阵A,B
        self.lora_A[adapter_name] = nn.Linear(self.in_features, r, bias=False)
        self.lora_B[adapter_name] = nn.Linear(r, self.out_features, bias=False)
        if use_rslora:
            self.scaling[adapter_name] = lora_alpha / math.sqrt(r)
        else:
            self.scaling[adapter_name] = lora_alpha / r

        # for inits that require access to the base weight, use gather_param_ctx so that the weight is gathered when using DeepSpeed
        if isinstance(init_lora_weights, str) and init_lora_weights.startswith("pissa"):
            with gather_params_ctx(self.get_base_layer().weight):
                self.pissa_init(adapter_name, init_lora_weights)
        elif isinstance(init_lora_weights, str) and init_lora_weights.lower() == "olora":
            with gather_params_ctx(self.get_base_layer().weight):
                self.olora_init(adapter_name)
        elif init_lora_weights == "loftq":
            with gather_params_ctx(self.get_base_layer().weight):
                self.loftq_init(adapter_name)
        elif init_lora_weights:
            self.reset_lora_parameters(adapter_name, init_lora_weights)
        # call this before dora_init
        self._move_adapter_to_device_of_base_layer(adapter_name)

        if use_dora:
            self.dora_init(adapter_name)
            self.use_dora[adapter_name] = True
        else:
            self.use_dora[adapter_name] = False

        # 设置可训练参数
        self.set_adapter(self.active_adapters)
  • update_layer()方法的关键行为有:
    • 1、读取LoRA关键参数ralpha
    • 2、根据Dropout参数判断是否加入Dropout
    • 3、创建lora_Alora_B线性层,并进行初始化。lora_A的初始化有多种方式,lora_B的初始值均为0,这样lora分支的值在没开始训练之前为0,不改变原模型权重值。
    • 设置lora分支为可训练参数,冻结其它层
  • lora_A层的初始化方法可以在reset_lora_parameters()方法中找到,部分注释如下
    def reset_lora_parameters(self, adapter_name, init_lora_weights):
        if init_lora_weights is False:
            return

        if adapter_name in self.lora_A.keys():
            # 若init_lora_weights为true则使用kaiming初始化
            if init_lora_weights is True:
                nn.init.kaiming_uniform_(self.lora_A[adapter_name].weight, a=math.sqrt(5))
            # 如果为gaussian则进行正态初始化
            elif init_lora_weights.lower() == "gaussian":
                nn.init.normal_(self.lora_A[adapter_name].weight, std=1 / self.r[adapter_name])
            else:
                raise ValueError(f"Unknown initialization {init_lora_weights=}")
            # 对B矩阵使用全0初始化
            nn.init.zeros_(self.lora_B[adapter_name].weight)
        if adapter_name in self.lora_embedding_A.keys():
            nn.init.zeros_(self.lora_embedding_A[adapter_name])
            nn.init.normal_(self.lora_embedding_B[adapter_name])
  • 设置可训练参数可以查看set_adapter()方法,部分注释如下
    def set_adapter(self, adapter_names: str | list[str]) -> None:
        if isinstance(adapter_names, str):
            adapter_names = [adapter_names]
        for layer_name in self.adapter_layer_names:
            module_dict = getattr(self, layer_name)
            for key, layer in module_dict.items():
                # 如果是adapter_names中需要训练的层,则开启梯度传播,否则关闭
                if key in adapter_names:
                    layer.requires_grad_(True)
                else:
                    layer.requires_grad_(False)

        self._active_adapter = adapter_names
  • 看完Linear类的初始化方法,还可以看一下forward方法,描述了LoRA模型如何与原模型推理的结果进行合并的,代码部分注释如下
    def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
        self._check_forward_args(x, *args, **kwargs)
        adapter_names = kwargs.pop("adapter_names", None)

        if self.disable_adapters:
            if self.merged:
                self.unmerge()
            result = self.base_layer(x, *args, **kwargs)
        elif adapter_names is not None:
            result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)
        elif self.merged:
            result = self.base_layer(x, *args, **kwargs)
        else:
            # 得到原始模型中的结果
            result = self.base_layer(x, *args, **kwargs)
            torch_result_dtype = result.dtype
            for active_adapter in self.active_adapters:
                if active_adapter not in self.lora_A.keys():
                    continue
                lora_A = self.lora_A[active_adapter]
                lora_B = self.lora_B[active_adapter]
                dropout = self.lora_dropout[active_adapter]
                scaling = self.scaling[active_adapter]
                x = x.to(lora_A.weight.dtype)

                if not self.use_dora[active_adapter]:
                    # 原始模型输出+可训练lora层的结果
                    result = result + lora_B(lora_A(dropout(x))) * scaling
                else:
                    x = dropout(x)
                    result = result + self.lora_magnitude_vector[active_adapter](
                        x,
                        lora_A=lora_A,
                        lora_B=lora_B,
                        scaling=scaling,
                        base_layer=self.get_base_layer(),
                    )

            result = result.to(torch_result_dtype)

        return result
  • 到这里,关于LoRA部分的源码就解析完了,后面就是训练这些标记为可训练参数的模块。

后记

  • PEFT库是我看过的,封装的比较复制的库了,虽然看起来很繁琐,但是在看这些源码的过程中,我也逐渐明白了为什么代码需要这样构建,以后如果需要构建自己的大型项目应该如何做,受益匪浅。
  • 在这里也希望大家能深入底层原理去了解算法,只有明白了其机理,才知道算法的优缺点
  • 9
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
在实战操作中,PEFT库可以用来微调BERT模型,以进行文本情感分类任务。首先,我们需要准备一个包含大量文本和标签的数据集,用于训练和验证BERT模型。然后,我们需要利用PEFT库中提供的工具和接口,将数据集转换成BERT模型可接受的格式,并进行数据预处理,如分词和填充等操作。 接着,我们可以利用PEFT库中提供的预训练模型,加载BERT模型的参数和网络结构,并在数据集上进行微调微调的过程中,我们可以通过调整学习率、批大小和训练轮数等超参数,来优化模型的性能。在每个训练轮数结束后,我们可以利用PEFT库中的评估工具对模型进行评估,以了解模型在验证集上的性能表现。 最后,当模型在验证集上的性能达到满意的水平后,我们可以使用PEFT库提供的保存模型工具,将微调后的BERT模型保存下来,以备在实际应用中使用。通过PEFT库的实战操作,我们可以有效地利用BERT模型进行文本情感分类任务,提高模型的准确性和泛化能力,从而更好地满足实际应用的需求。 PEFT库的实战操作不仅帮助我们更好地理解和使用BERT模型,也为我们提供了一套完整的工具和流程,使得模型训练和应用变得更加简单和高效。 PEFT库实战(一): lora微调BERT(文本情感分类) 的操作流程清晰,易于上手,为我们在文本情感分类任务中的应用提供了有力的支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羽星_s

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值