贝叶斯滤波框架(含数学证明)

1. 符号说明

  • x k x_{k} xk表示 k k k时刻目标的状态
  • z k z_{k} zk表示 k k k时刻目标的观测状态
  • X k = { x 0 , x 1 , . . . , x k } X_{k}=\{x_0,x_1,...,x_k\} Xk={x0,x1,...,xk}表示从初始 0 0 0时刻到 k k k时刻目标的状态的集合
  • Z k = { z 1 , z 2 , . . . , z k } Z_{k}=\{z_1,z_2,...,z_k\} Zk={z1,z2,...,zk}表示从 1 1 1时刻到 k k k时刻目标的观测状态的集合

2. 贝叶斯框架

假设已知目标状态的先验信息,即 p ( x 0 ) = p ( x 0 ∣ z 0 ) p(x_0)=p(x_0|z_0) p(x0)=p(x0z0)已知( z 0 z_0 z0表示没有观测)。再假设目标的状态转移服从一阶马尔可夫链模型,即 x k x_k xk只依赖于 x k − 1 x_{k-1} xk1。并且已知目标的状态转移概率密度函数为 p ( x k ∣ x k − 1 ) p(x_k|x_{k-1}) p(xkxk1),该函数由目标的动态模型决定。比如,在线性高斯的情况下,有:
x k = F x k − 1 + v k − 1 x_k=Fx_{k-1}+v_{k-1} xk=Fxk1+vk1
其中, v k − 1 ∼ N ( 0 , Q k − 1 ) , v_{k-1}\sim N(0,Q_{k-1}), vk1N(0,Qk1)那么状态转移概率密度函数为:
p ( x k ∣ x k − 1 ) = N ( x k ; F x k − 1 , Q k − 1 ) p(x_k|x_{k-1})=N(x_k;Fx_{k-1},Q_{k-1}) p(xkxk1)=N(xk;Fxk1,Qk1)
似然函数 p ( z k ∣ x k ) p(z_k|x_k) p(zkxk)由目标的观测模型决定。比如,在线性高斯的情况下,有:
z k = H x k + w k z_k=Hx_k+w_k zk=Hxk+wk
其中, w k ∼ N ( 0 , R k ) w_k\sim N(0,R_k) wkN(0,Rk),那么似然函数为:
p ( z k ∣ x k ) = N ( z k ; H x k , R k ) p(z_k|x_k)=N(z_k;Hx_k,R_k) p(zkxk)=N(zk;Hxk,Rk)
贝叶斯框架可分为两步,即预测和更新。

2.1 预测

假设我们已经知道了上一时刻的后验概率密度函数 p ( x k − 1 ∣ Z k − 1 ) p(x_{k-1}|Z_{k-1}) p(xk1Zk1) k k k最小为1,当 k = 1 k=1 k=1时,那么后验概率密度函数 p ( x 0 ∣ z 0 ) p(x_0|z_0) p(x0z0)就变成了关于目标状态的先验信息 p ( x 0 ) p(x_0) p(x0)了)。那么预测步为:
p ( x k ∣ Z k − 1 ) = ∫ − ∞ + ∞ p ( x k ∣ x k − 1 ) p ( x k − 1 ∣ Z k − 1 ) d x k − 1 p(x_k|Z_{k-1})=\int _{-\infty}^{+\infty}p(x_k|x_{k-1})p(x_{k-1}|Z_{k-1})dx_{k-1} p(xkZk1)=+p(xkxk1)p(xk1Zk1)dxk1
证明(不想看数学证明可以略过):

因为
p ( x k , x k − 1 ∣ Z k − 1 ) = p ( x k , x k − 1 , Z k − 1 ) p ( Z k − 1 ) = p ( x k ∣ x k − 1 , Z k − 1 ) p ( x k − 1 ∣ Z k − 1 ) p ( Z k − 1 ) p ( Z k − 1 ) = p ( x k ∣ x k − 1 , Z k − 1 ) p ( x k − 1 ∣ Z k − 1 ) \begin{aligned} p(x_k,x_{k-1}|Z_{k-1})&=\dfrac{p(x_k,x_{k-1},Z_{k-1})}{p(Z_{k-1})}\\ &=\dfrac{p(x_k|x_{k-1},Z_{k-1})p(x_{k-1}|Z_{k-1})p(Z_{k-1})}{p(Z_{k-1})}\\ &=p(x_k|x_{k-1},Z_{k-1})p(x_{k-1}|Z_{k-1}) \end{aligned} p(xk,xk1Zk1)=p(Zk1)p(xk,xk1,Zk1)=p(Zk1)p(xkxk1,Zk1)p(xk1Zk1)p(Zk1)=p(xkxk1,Zk1)p(xk1Zk1)
而目标状态服从一阶马尔可夫链模型,所以有:给定 x k − 1 x_{k-1} xk1 x k x_k xk条件独立于 Z k − 1 Z_{k-1} Zk1,即:
p ( x k ∣ x k − 1 , Z k − 1 ) = p ( x k ∣ x k − 1 ) p(x_k|x_{k-1},Z_{k-1})=p(x_k|x_{k-1}) p(xkxk1,Zk1)=p(xkxk1)
所以
p ( x k , x k − 1 ∣ Z k − 1 ) = p ( x k ∣ x k − 1 ) p ( x k − 1 ∣ Z k − 1 ) p(x_k,x_{k-1}|Z_{k-1})=p(x_k|x_{k-1})p(x_{k-1}|Z_{k-1}) p(xk,xk1Zk1)=p(xkxk1)p(xk1Zk1)
最后有
p ( x k ∣ Z k − 1 ) = ∫ − ∞ + ∞ p ( x k , x k − 1 ∣ Z k − 1 ) d x k − 1 p(x_k|Z_{k-1})=\int _{-\infty}^{+\infty}p(x_k,x_{k-1}|Z_{k-1})dx_{k-1} p(xkZk1)=+p(xk,xk1Zk1)dxk1
得证。

2.2 更新

更新步为:
p ( x k ∣ Z k ) = p ( z k ∣ x k ) p ( x k ∣ Z k − 1 ) p ( z k ∣ Z k − 1 ) p(x_k|Z_k)=\dfrac{p(z_k|x_k)p(x_k|Z_{k-1})}{p(z_k|Z_{k-1})} p(xkZk)=p(zkZk1)p(zkxk)p(xkZk1)
其中,
p ( z k ∣ Z k − 1 ) = ∫ − ∞ + ∞ p ( z k ∣ x k ) p ( x k ∣ Z k − 1 ) d x k p(z_k|Z_{k-1})=\int _{-\infty}^{+\infty}p(z_k|x_k)p(x_k|Z_{k-1})dx_k p(zkZk1)=+p(zkxk)p(xkZk1)dxk
证明(不想看数学证明可以略过):

因为
p ( x k ∣ Z k ) = p ( x k ∣ z k , Z k − 1 ) = p ( x k , z k , Z k − 1 ) p ( z k , Z k − 1 ) = p ( z k ∣ x k , Z k − 1 ) p ( x k ∣ Z k − 1 ) p ( Z k − 1 ) p ( z k ∣ Z k − 1 ) p ( Z k − 1 ) = p ( z k ∣ x k , Z k − 1 ) p ( x k ∣ Z k − 1 ) p ( z k ∣ Z k − 1 ) \begin{aligned} p(x_k|Z_k)&=p(x_k|z_k,Z_{k-1})\\ &=\dfrac{p(x_k,z_k,Z_{k-1})}{p(z_k,Z_{k-1})}\\ &=\dfrac{p(z_k|x_k,Z_{k-1})p(x_k|Z_{k-1})p(Z_{k-1})}{p(z_k|Z_{k-1})p(Z_{k-1})}\\ &=\dfrac{p(z_k|x_k,Z_{k-1})p(x_k|Z_{k-1})}{p(z_k|Z_{k-1})}\\ \end{aligned} p(xkZk)=p(xkzk,Zk1)=p(zk,Zk1)p(xk,zk,Zk1)=p(zkZk1)p(Zk1)p(zkxk,Zk1)p(xkZk1)p(Zk1)=p(zkZk1)p(zkxk,Zk1)p(xkZk1)
而帧与帧之间的测量是独立的,即给定 x k x_k xk z k z_k zk条件独立于 Z k − 1 Z_{k-1} Zk1,所以有:
p ( z k ∣ x k , Z k − 1 ) = p ( z k ∣ x k ) p(z_k|x_k,Z_{k-1})=p(z_k|x_k) p(zkxk,Zk1)=p(zkxk)
所以得:
p ( x k ∣ Z k ) = p ( z k ∣ x k ) p ( x k ∣ Z k − 1 ) p ( z k ∣ Z k − 1 ) p(x_k|Z_k)=\dfrac{p(z_k|x_k)p(x_k|Z_{k-1})}{p(z_k|Z_{k-1})} p(xkZk)=p(zkZk1)p(zkxk)p(xkZk1)
对于分母的证明,有:
p ( z k , x k ∣ Z k − 1 ) = p ( z k , x k , Z k − 1 ) p ( Z k − 1 ) = p ( z k ∣ x k , Z k − 1 ) p ( x k ∣ Z k − 1 ) p ( Z k − 1 ) p ( Z k − 1 ) = p ( z k ∣ x k ) p ( x k ∣ Z k − 1 ) \begin{aligned} p(z_k,x_k|Z_{k-1})&=\dfrac{p(z_k,x_k,Z_{k-1})}{p(Z_{k-1})}\\ &=\dfrac{p(z_k|x_k,Z_{k-1})p(x_k|Z_{k-1})p(Z_{k-1})}{p(Z_{k-1})}\\ &=p(z_k|x_k)p(x_k|Z_{k-1}) \end{aligned} p(zk,xkZk1)=p(Zk1)p(zk,xk,Zk1)=p(Zk1)p(zkxk,Zk1)p(xkZk1)p(Zk1)=p(zkxk)p(xkZk1)
然后对上式边缘化,就有:
p ( z k ∣ Z k − 1 ) = ∫ − ∞ + ∞ p ( z k , x k ∣ Z k − 1 ) d x k p(z_k|Z_{k-1})=\int _{-\infty}^{+\infty}p(z_k,x_k|Z_{k-1})dx_k p(zkZk1)=+p(zk,xkZk1)dxk

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值