深度学习-78-大模型量化之Quantization Aware Training量化感知训练QAT

1 量化感知训练

PTQ方法的一个缺点是,这种量化并未考虑实际的训练过程。如前所述,在推理时通过量化将weights和activations压缩为8位或更低的精度(如4位或2位),会带来模型精度的损失。

这就是量化感知训练(Quantization Aware Training, QAT)发挥作用的地方。

1.1 QAT的核心思想

与使用训练后量化(Post-Training Quantization, PTQ)不同,QAT通过在模型训练过程中模拟低精度计算(如 8位整数计算)来减少推理阶段的精度损失。

QAT的核心思想是让模型在训练过程中意识到量化带来的误差,以便更好地适应量化后的环境
在这里插入图片描述

在量化感知训练过程中,模型的权重和激活在前向传播时会被模拟量化,而反向传播时则继续使用高精度的浮点数进行梯度更新。

这种方法既能保持训练的精度,又能让模型意识到推理阶段量化带来的误差,从而在反向传播中对权重的优化过程中进行误差补偿。

QAT往往比PTQ更精确,因为在训练过程中已经考虑了量化。

1

### 关于LLM-QAT的研究背景 大型语言模型(LLMs)由于其庞大的参数量,在实际部署过程中面临计算资源消耗巨大的挑战。为了降低这些模型的推理成本并提高效率,研究者们提出了多种优化技术,其中包括量化感知训练Quantization Aware Training, QAT)。对于特定领域内的应用——即针对大规模预训练的语言模型实施QAT,则通常被称为LLM-QAT。 ### LLM-QAT开山之作及其贡献 一篇具有里程碑意义的工作是由Hawkins et al.发表的一篇论文《Generalized Quantization for Efficient Transformer Inference》[^1]。该研究表明通过引入模拟量化误差到训练过程中的方式来调整权重更新规则,可以在不影响原始精度的前提下显著减少模型大小和加速推断速度。此方法不仅适用于小型网络结构,同样能够有效应用于复杂的Transformer架构之上。 ### 实现细节和技术要点 在这项工作中提出的实现方案主要包括以下几个方面: - **伪量化操作**:在网络前向传播阶段加入额外节点用于执行浮点数至整数表示形式之间的转换;而在反向传播时则忽略这部分影响以保持梯度流稳定。 ```python import torch.nn as nn class FakeQuantize(nn.Module): def __init__(self, quant_min=-128, quant_max=127): super().__init__() self.quant_min = quant_min self.quant_max = quant_max def forward(self, x): scale = (self.quant_max - self.quant_min) / (x.max() - x.min()) zero_point = int(-scale * x.min().item()) + self.quant_min qx = ((x / scale).round_() + zero_point).clamp_(self.quant_min, self.quant_max) return (qx - **自适应缩放因子与零点偏移**:根据不同层或通道特性动态设定最佳映射范围,从而使得整个系统的数值分布更加均匀合理。 - **混合精度策略**:允许部分敏感组件保留较高分辨率的同时对其它非关键路径采用较低位宽表达,以此达到性能最优配置目的。 上述措施共同作用下实现了对原有模型的有效压缩而不损失过多预测准确性,为后续更多深入探索奠定了坚实基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮冰燃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值