12章 未归一化统计模型的估计

统计模型通常基于非归一化概率密度。 也就是说,模型包含了一个未知的难以计算的归一化常数。 在本章中,我们将展示如何使用不同的估计方法来估计这些模型。

21.1 未归一化统计模型

假设我们观察到一个随机向量\textbf{x}\in\mathbb{R}^{n},它的概率密度函数 (pdf) 由 p_{\textbf{x}}(\cdot ) 表示。我们有一个参数化的密度模型 p(.;\theta),其中\theta是m 维向量的参数。我们想根据\textbf{x}来估计参数\theta,即,我们想用p(\cdot ;\widetilde{\theta})来近似p_{\textbf{x}}(\cdot ) 以获得估计的参数值\widetilde{\theta}。(为了避免随机变量和积分变量之间的混淆,我们使用\xi作为积分变量。)

考虑:我们只能计算模型给出的 pdf,除了乘法常数 1/Z(\theta)

p(\xi;\theta)=\frac{1}{Z(\theta)}q(\xi;\theta)

也就是说,我们知道q的函数形式是一个解析表达式(或任何可以轻松计算的形式),但我们不知道如何计算Z,它由通常难以解析的积分给出:

Z(\theta)=\int_{\xi\in\mathbb{R}^{n}}q(\xi;\theta)d\xi

实际上,对于高维度(任何 n>2),这个积分值是不可能计算的。因此,不能容易地进行最大似然估计。

一种解决方案是使用蒙特卡罗方法逼近归一化常数Z。在本章中,我们将讨论一种更简单的方法,称为分数匹配(Score Matching)。

21.2 分数匹配估计

在下文中,我们广泛使用对数密度对于数据向量的梯度。 为简单起见,我们将其称为得分函数(score function),它的传统定义是关于假设位置参数的得分函数。 对于模型密度,我们用\mathbf{\psi}(\xi;\theta)表示得分函数:

\psi(\xi;\theta)=\begin{pmatrix} \frac{\partial \log p(\xi;\theta)}{\partial\xi_1}\\ \\ ...\\ \\ \frac{\partial \log p(\xi;\theta)}{\partial\xi_n}\\ \end{pmatrix}= \begin{pmatrix} \psi_1(\xi;\theta)\\ \\ ...\\ \\ \psi_n(\xi;\theta)\\ \end{pmatrix}=\bigtriangledown _\xi \log p(\xi;\theta)

使用分数函数的重点是它不依赖于Z(\theta)。事实上,我们显然有

\psi(\xi;\theta)=\bigtriangledown _\xi \log q(\xi;\theta)

同样,我们用 \psi_\textbf{x}(\cdot)=\bigtriangledown_\xi \log p_\textbf{x}(\cdot)表示观测数据\textbf{x}的分布的得分函数。 原则上,这可以通过计算 pdf 的非参数估计的对数梯度来估计——但我们将在下面看到,不需要这样的计算。(注意,得分函数是从\mathbb{R}^n\mathbb{R}^n的映射)

现在,通过最小化模型的得分函数\psi(\cdot;\theta)和数据的得分函数\psi_{\textbf{x}}(\cdot) 之间的期望平方距离来估计模型。 我们将这个平方距离定义为

J(\theta)=\frac{1}{2}\int_{\xi\in\mathbb{R}^n} p_\textbf{x}(\xi)||\psi(\xi;\theta)-\psi_{\textbf{x}}(\xi)||^2 d\xi

因此,\theta的分数匹配估计由下式给出

\hat{\theta}={\rm arg}\min _{\theta} J(\theta)

这种方式的启发是,得分函数可以直接从q计算出,我们不需要计算 Z

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Manigoldo_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值