pytorch自定义dataset:name ‘Optional‘ is not defined

错误描述

pytorch在自定义dataset CELEBA类的时候,用到了以下表达:

class CELEBA(DatasetFolder):

    def __init__(
            self,
            root: str,
            transform: Optional[Callable] = None,
            target_transform: Optional[Callable] = None,
            loader: Callable[[str], Any] = default_loader,
            is_valid_file: Optional[Callable[[str], bool]] = None,
    ):
        super(CELEBA, self).__init__(root, loader, IMG_EXTENSIONS if is_valid_file is None else None,
                                          transform=transform,
                                          target_transform=target_transform,
                                          is_valid_file=is_valid_file)
        self.imgs = self.samples

        self.onehot_targets = encode_onehot(self.targets, 10177)  # 50 10177

错误信息:

~/SageMaker/dsdh/data/celeba.py in CELEBA()
63 target_transform: Optional[Callable] = None,
64 loader: Callable[[str], Any] = default_loader,
—> 65 is_valid_file: Optional[Callable[[str], bool]] = None,
66 ):
67 super(CELEBA, self).init(root, loader, IMG_EXTENSIONS if is_valid_file is None else None,

NameError: name ‘Optional’ is not defined

解决方法

from typing import Optional, Callable, Any, Tuple
PyTorch中的`Dataset`是一个基础数据集类,它用于从磁盘或其他数据源加载数据,以便供模型训练或评估。如果你想在PyTorch自定义一个数据集,你需要创建一个继承自`torch.utils.data.Dataset`的子类,并实现两个基本的方法: 1. `__len__()`:返回数据集中样本的数量。这对于循环遍历整个数据集至关重要。 2. `__getitem__(index)`:这个方法接收一个索引(通常是整数),并返回对应位置的数据样本。通常情况下,它会打开文件,处理数据,然后返回。 下面是一个简单的例子,假设我们有一个文本分类任务,数据存储在一个CSV文件中,包含两列:文本内容和标签: ```python import torch from torch.utils.data import Dataset class CustomTextDataset(Dataset): def __init__(self, file_path, transform=None): self.file_path = file_path self.texts = [] self.labels = [] with open(file_path, 'r') as f: lines = f.readlines() for line in lines: text, label = line.strip().split(',') self.texts.append(text) self.labels.append(int(label)) # 假设标签是整数 self.transform = transform # 可选的预处理步骤 def __len__(self): return len(self.texts) def __getitem__(self, index): text = self.texts[index] label = self.labels[index] if self.transform: # 这里你可以对文本进行任何必要的转换,如分词、编码等 text = self.transform(text) return {'text': text, 'label': label} # 使用示例 dataset = CustomTextDataset('data.csv') dataloader = torch.utils.data.DataLoader(dataset, batch_size=32) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值