3D Gaussian Splatting 环境配置

1. 下载源码

个人发现的很多问题其实是源码没下全,用 git clone 可以直接下全,手动下载需下载四份代码。

1.1 git clone 自动下载

git clone https://github.com/graphdeco-inria/gaussian-splatting.git --recursive

1.2 手动下载

不能 git clone 的再手动下载,包括四份代码:
3d Gaussian Splatting源码:
3d Gaussian Splatting下载地址
3d Gaussian Splatting 中的 Submodules/diff-gaussian-rasterization:
diff-gaussian-rasterization下载地址
Diff-gaussian-rasterization 中 third_party/glm:
glm下载地址
3d Gaussian Splatting 中的 Submodules/simple-knn:
simple-knn下载地址
下载完按对应位置解压就行。

2. 环境配置

Anaconda 新建环境,pytorch ,cuda 安装及 pip 能安装的略过,注意 cuda 版本一定要和 pytorch 版本对应上,主要写容易出问题的地方。

2.1 MSVC

安装 Diff-gaussian-rasterization 要用到 MSVC,比较懒人的办法是安装 Visual Studio 就行,记得改安装位置:
下载 Visual Studio Tools - 免费安装 Windows、Mac、Linux (microsoft.com)![[Pasted image 20231211113840.png|900]]
安装完成后,将cl.exe的路径添加到环境变量,参考如下:

D:\Software\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.37.32822\bin\Hostx 64\x64

在命令行输入

cl

有如下输出,即为配置成功。![[Pasted image 20231211114347.png]]
然后就可以继续安装子模块了:

pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn

2.2 可视化界面 Viewer

REAME 里已给出 pre-built 版本的 Viewer(windows用的),并不需要自己构建:
Viewer下载地址
下载后解压,通过如下命令使用:

2.2.1 训练过程中可视化

train.py 开始后可以在这里看训练过程,在 Viewer 文件夹下:

SIBR_remoteGaussian_app

2.2.2 训练完成后可视化

生成 output 下的文件夹后看训练结果,在 Viewer 文件夹下:

SIBR_gaussianViewer_app -m <path to trained model>

path to trained model 就是 output 内的文件夹,如:gaussian-splatting-main/output/ship

3. 问题自查

  1. 检查 pytorch 版本是否与 cuda 版本对应
  2. 检查代码是否下载完全
  3. 检查 cl 命令能否使用

4. 制作数据集

4.1 安装 colmap

colmap下载地址
解压后,添加环境变量:

D:\XXX\COLMAP-3.8-windows-cuda

可在命令行中使用colmap命令检查是否配置成功。

4.2 使用 convert.py

准备一组图片,放入input文件夹,形成如下格式的文件树:

<location>
|---input
    |---<image 0>
    |---<image 1>
    |---...

运行如下指令,即可生成数据集:

python convert.py -s <location> [--resize] #--resize为可选参数,使用这个参数需要安装ImageMagick 
### 实现 3D Gaussian Splatting 的准备工作 为了在 Ubuntu 上成功实现 3D Gaussian Splatting (3DGS),需要确保操作系统环境已经准备好并安装必要的依赖项。对于 Ubuntu 22.04 版本,建议按照以下指南操作。 #### 安装基础软件包 首先更新系统的软件源列表,并安装一些基本工具和库: ```bash sudo apt-get update && sudo apt-get upgrade -y sudo apt-get install build-essential cmake git wget unzip pkg-config libopencv-dev python3-pip -y ``` #### 设置 Python 和 PyTorch 环境 由于 3D Gaussian Splatting 需要使用到 PyTorch 进行模型训练与推理,因此需先确认 CUDA 版本再选择合适的 PyTorch 版本来安装[^1]。可以通过命令 `nvcc --version` 来查看当前 GPU 所支持的 CUDA 版本号。接着通过 pip 工具来安装对应版本的 PyTorch 及其扩展组件 torchvision: ```bash pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` 这里假设使用的 CUDA 是 11.7 版本;如果不是,则应调整 URL 中 cu 后面的部分以匹配实际的 CUDA 版本。 #### 获取项目代码 从 GitHub 下载官方提供的 3D Gaussian Splatting 源码仓库: ```bash git clone https://github.com/graphdeco-inria/gaussian-splatting.git cd gaussian-splatting ``` #### 编译 C++ 组件 进入克隆下来的目录后,编译所需的 C++ 插件模块: ```bash mkdir build && cd build cmake .. make -j$(nproc) ``` 这一步骤会生成执行文件和其他必需的支持文件。 #### 准备数据集 如果打算测试自采集的数据集,在此之前还需要做额外的工作来处理这些原始图像序列或者点云数据,使其能够被算法所接受。具体方法可以参见相关文档说明[^3]。 #### 测试运行 最后,尝试启动示例程序验证整个流程是否正常工作: ```bash python3 main.py --config configs/example.yaml ``` 以上就是在 Ubuntu 平台上部署 3D Gaussian Splatting 技术的大致过程概述。需要注意的是,不同硬件配置可能会遇到不同的兼容性和性能优化问题,所以在实践中可能还需进一步调试参数设置。
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值