3D Gaussian Splatting——配置与实例

3DGS是目前三维重建领域中的大作和经典之作,原理相信有很多人介绍过了,原理篇会在后面有空的时候更新,这里只做实例讲解。事实上,3DGS做了这样一件事情:首先输入一个稀疏的点云(一般是利用colmap的经典稀疏重建方法得到)相比于神经辐射场NeRF,3DGS不对每根光线做建模以及采样点的神经网络计算(太耗费内存与计算资源),他将每一个点建模为一个椭球(高斯分布),具体地,每一个高斯分布的参数涉及协方差,而这个协方差之列向量正好可以看作是旋转平移变换!

然后,就是这个Splatting过程,对于任意的点,会经过分裂或者clone的过程,得到一个稠密点云,然后渲染(注意这个渲染叫可微光栅化,与NeRF对于每条光线采样建模不一样)得到估计的图像,与原始图像做loss,以调整里面的各个参数。我们可以发现,3DGS是一个显式建模的过程,即可以看作是由一个几百万(这个数字是建模以后得到的)个高斯分布组成的庞大的高斯群(字面意思,非数学中的群),而NeRF对于场景的建模则是一个MLP

3DGS在很多方面优于NeRF,比如训练速度,渲染速度,建模场景等,NeRF的优势在于,它可以表示连续的高分辨的场景,并且可以转成mesh来使用,而3DGS转mesh一直是一个令人头疼的问题,正如valse2024的workshop中学者方杰民所表达的,对于3DGS来说,consistency与geometry是一个trade-off。

1.先从官网开始配置环境

放上原作的code链接:

GitHub - graphdeco-inria/gaussian-splatting: Original reference implementation of "3D Gaussian Splatting for Real-Time Radiance Field Rendering"Original reference implementation of "3D Gaussian Splatting for Real-Time Radiance Field Rendering" - graphdeco-inria/g

### 视频Splatting技术及其应用 视频Splatting是一种基于点云表示的技术,用于高效渲染和处理动态场景。它通过将三维几何信息映射到二维图像空间来实现快速可视化效果[^1]。具体来说,这种方法利用高斯分布模型描述每个点的颜色、位置以及方向特性,从而能够灵活应对复杂光照条件下的表面反射属性变化。 #### 技术背景 传统的神经辐射场(NeRF)虽然可以生成高质量的视图合成结果,但由于其训练过程依赖于特定场景的数据集,在多目标重建或者文字驱动场景生成方面存在明显局限性[^4]。相比之下,3D Gaussian Splatting不仅减少了计开销,还支持实时交互操作,因此非常适合应用于增强现实(AR)、虚拟现实(VR),甚至是电影制作等领域。 #### 显式运动引导探索 MotionGS研究进一步推进了这一领域的发展,提出了显式的运动指导机制以改善可变形物体建模中的细节表现[^2]。该方法允许更精确地捕捉对象随时间演变的状态转移规律,并将其融入至整体框架之中,使得最终输出更加贴近真实世界物理行为模式。 #### 应用实例分析 当涉及到风格迁移时,StyleGaussian展现出了优于其他零样本学习法的表现水平——既保持原有内容结构不变的同时又能很好地匹配给定样式参照图片特征[^5]。这意味着未来我们或许可以通过简单的文本指令便能轻松定制个性化视觉特效方案! 以下是几个典型应用场景: - **影视后期处理**:借助Video Splatting强大的时空一致性保障能,导演们可以在不损失画质的前提下自由调整镜头角度; - **游戏开发引擎优化**:对于需要频繁更新地图资源的大规模开放型作品而言,采用此类轻量化解决方案无疑会极大缩短加载等待时间; - **远程医疗培训平台建设**:结合AI辅助诊断工具包共同作用下,学员能够在模拟环境中反复练习手术流程直至完全掌握要领为止; ```python import numpy as np def gaussian_splatting(points, colors, normals): """ Simulates basic Gaussian splatting process. Args: points (np.ndarray): Array of point positions. colors (np.ndarray): Corresponding color values per point. normals (np.ndarray): Surface normal vectors at each location. Returns: rendered_image (np.ndarray): Final composited frame after applying splats. """ # Placeholder implementation details omitted here... pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值