梯度算子(一阶)与拉普拉斯算子(二阶)的区别
下面都是针对上图进行处理
取90度方向的梯度算子和拉普拉斯算子,以下为在空间域中的核
拉普拉斯算子(二阶)
[
−
1
2
−
1
−
1
2
−
1
−
1
2
−
1
]
\left[ \begin{matrix} -1& 2& -1\\ -1& 2& -1\\ -1& 2& -1\\ \end{matrix} \right]
⎣⎡−1−1−1222−1−1−1⎦⎤
梯度算子(一阶)
[
−
1
0
1
−
1
0
1
−
1
0
1
]
\left[ \begin{matrix} -1& 0& 1\\ -1& 0& 1\\ -1& 0& 1\\ \end{matrix} \right]
⎣⎡−1−1−1000111⎦⎤
最终可以得到结果
其中左侧为二阶算子的结果,右侧为一阶算子的结果。
(原来图中只有0和255两个值,但是卷积后,出现负值,因此上图中,灰色代表值为0,黑色为负值,白色为正)
可以看到二阶算子的结果出现两对双线效应,并且比较细。
而一阶算子的结果是比较粗的线。
我们进一步将上图中,负值的像素全部归0,得到
于是可以得出结论,二阶算子可以得到图像的细节,在分割领域用于线检测。
一阶算子可以得到图像的边缘,在分割领域用于边缘检测。