双边滤波数学原理和C++代码实现

本文介绍了双边滤波的基本原理,它结合了空间邻近度和像素值相似度来保边去噪。文中提供了双边滤波的C++代码实现,并通过效果测试对比了自编函数与OpenCV内置函数的滤波结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、基本原理

  先从均值滤波说起,模板中所有元素的值是相同的,表示邻域内的每个像素具有相同的权重。而对于高斯滤波,距离模板中心更近的元素具有更高的权重。双边滤波在高斯滤波的基础上更进一步,不仅考虑了元素到模板中心距离的远近,而且考虑了元素灰度值与模板中心灰度值之差的大小。换言之,到模板中心更近、与模板中心的灰度值差异更小的元素,具有更高的权重。
  双边滤波(bilateral filter)是一种非线性的滤波方法,同时考虑了空间邻近度和像素值相似度,从而达到保边去噪的目的。双边滤波之所以能够做到:在平滑去噪的同时还能够很好地保留边缘(edge preserve),是由于其模板元素的值由两部分组成:

  • 第一部分由“元素到模板中心的欧式距离”决定
  • 第二部分由“元素的灰度值、模板中心的灰度值之差”决定

  第一部分的计算公式如下,( k k

C++中,GDAL是一个强大的地理空间数据访问库,但它本身并不直接提供图像处理的功能,如双边滤波双边滤波通常用于图像平滑并保留边缘信息,OpenCV是一个常用的库,它有现成的函数可以实现双边滤波。但在没有OpenCV的情况下,我们可以利用一些数学图像处理的基本原理来手动实现。 以下是一个简单的双边滤波算法的示例代码,仅用于演示概念,而不是最优化的性能版本: ```cpp #include <gdal/gdal.h> #include <gdal_priv.h> // for GDALGetDataTypeByName() #include <algorithm> // 边缘像素阈值 const double sigmaColor = 50.0; const double sigmaSpace = 5.0; // 帮助函数,计算高斯权重 double GaussianWeight(double distance, double sigma) { return std::exp(-distance * distance / (2 * sigma * sigma)); } // 双边滤波函数 void BilateralFilter(gdal.Dataset* dataset, int xSize, int ySize, int radius) { // 获取输入数据类型 gdalDataType dataType = GDALGetDataTypeByName(dataset->GetRasterBand(1)->GetDescription()); float* input = static_cast<float*>(dataset->GetRasterBand(1)->ReadRaster(0, 0, xSize, ySize, nullptr, dataType)); // 创建临时缓冲区 float* output = new float[xSize * ySize]; memset(output, 0, sizeof(float) * xSize * ySize); // 遍历每个像素 for(int y = -radius; y <= radius; ++y) { for(int x = -radius; x <= radius; ++x) { int i = y + radius * xSize; double colorWeightSum = 0.0; double spaceWeightSum = 0.0; int index = 0; // 计算邻域内像素的颜色空间权重 for(int dy = -radius; dy <= radius; ++dy) { for(int dx = -radius; dx <= radius; ++dx) { if(dx == 0 && dy == 0) continue; // 自身像素不参与加权 int neighborY = y + dy; int neighborX = x + dx; if(neighborY >= 0 && neighborX >= 0 && neighborY < ySize && neighborX < xSize) { double dColor = input[(neighborY * xSize) + neighborX] - neighborY) * (y - neighborY) + (x - neighborX) * (x - neighborX))) / sigmaSpace; colorWeightSum += GaussianWeight(dColor, sigmaColor); spaceWeightSum += GaussianWeight(dSpace, sigmaSpace); index += neighborY * xSize + neighborX; } } } // 更新输出像素值 output[i] = input[i] + (input[index] - input[i]) / colorWeightSum * spaceWeightSum; } } // 将结果写回GDAL Band dataset->GetRasterBand(1)->WriteRaster(0, 0, xSize, ySize, output, dataType, NULL, 0); delete[] output; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ygdd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值