图像清晰度评价函数

图像清晰度评价函数是指导调焦机构找到正焦位置的关键,要求具备单峰性、高灵敏度、鲁棒性、实时性和通用性。常见的评价方法包括基于空域(如SMD、Roberts函数、Brenner函数、Laplace函数)、变换域(傅里叶变换、离散余弦变换)、信息学和统计学方法。这些方法通过分析图像的梯度、高频信息、熵和灰度分布等特征来评估图像清晰度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

        图像清晰度是用来指导调焦机构找到正焦位置的评价函数。理想的清晰度评价曲线如下图所示,其中P 是评价函数最大值的位置,其对应正焦位置,P1 和P2 为正焦位置焦前和焦后采集到图像的清晰度评价结果。     

  

         为了指导调焦机构找到正焦位置,清晰度曲线须具有以下特点:

  1. 单峰性:对于同一个成像系统,当目标、物距确定时,具有唯一确定的正焦位置,且距焦点的绝对距离越大离焦程度越严重。也就是说清晰度评价函数也应具有唯一的最大值,且清晰度评价函数最大值之前成单调上升趋势,最大值之后成单调下降趋势。因此,清晰度评价曲线的单峰性是清晰度评价函数指导调焦的前提条件。
  2. 灵敏度高:由于该清晰度评价函数是用于精细对焦,只有较高的灵敏度才能区分轻微离焦。所以较高灵敏度是清晰度评价算法的基本要求。
  3.  鲁棒性强:实际的观测过程所面临的环境是复杂多变的,被摄目标、光照、成像系统、随机噪声等的变化都会对清晰度评价有一定的影响。因此要求清晰度评价函数具有较强的鲁棒性。<
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沧海一升

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值