LOAM
沧海一升
这个作者很懒,什么都没留下…
展开
-
LOAM_velodyne学习(一)
在研读了论文及开源代码后,对LOAM的一些理解做一个整理。文章:Low-drift and real-time lidar odometry and mapping开源代码:https://github.com/daobilige-su/loam_velodyne系统概述LOAM的整体思想就是将复杂的SLAM问题分为:1. 高频的运动估计; 2. 低频的环境建图。Lidar...原创 2018-06-17 17:23:48 · 39453 阅读 · 36 评论 -
LOAM_velodyne学习(三)
终于到第三个模块了,我们先来回顾下之前的工作:点云数据进来后,经过前两个节点的处理可以完成一个完整但粗糙的里程计,可以概略地估计出Lidar的相对运动。如果不受任何测量噪声的影响,这个运动估计的结果足够精确,没有任何漂移,那我们可以直接利用估计的Lidar位姿和对应时刻的量测值完成建图。但这就如同现实中不存在一个不受外力就能匀速直线运动的小球一样,量测噪声是不可避免的,因此Lidar位姿估计偏差一...原创 2018-07-17 21:16:18 · 7613 阅读 · 10 评论 -
LOAM_velodyne学习(二)
LaserOdometry这一模块(节点)主要功能是:进行点云数据配准,完成运动估计利用ScanRegistration中提取到的特征点,建立相邻时间点云数据之间的关联,由此推断lidar的运动。我们依旧从主函数开始:int main(int argc, char** argv){ ros::init(argc, argv, "laserOdometry"); ros::N...原创 2018-07-05 20:38:07 · 10354 阅读 · 13 评论 -
LOAM_velodyne学习(四)
TransformMaintenance来到了最后一个模块,代码不是很长,我们在看完代码之后,再详细说明这个模块的功能依然主函数开始int main(int argc, char** argv){ ros::init(argc, argv, "transformMaintenance"); ros::NodeHandle nh; //订阅了两个节点 ros::Su...原创 2018-07-18 12:00:02 · 4577 阅读 · 1 评论 -
LeGO-LOAM学习
前言在学习了LOAM之后,了解到LeGO-LOAM(面向复杂情况的轻量级优化地面的雷达里程计),进行了一个学习整理。Github:https://github.com/RobustFieldAutonomyLab/LeGO-LOAM论文:https://github.com/RobustFieldAutonomyLab/LeGO-LOAM/blob/master/Shan_Englot_...原创 2019-03-11 10:44:58 · 14211 阅读 · 4 评论