简述:ACWING 蓝桥 相较于 基础篇,在exgcd算法上进行了改进,研究发现
算法先进性在于进行了一步易位,底层原理是gcd的一致性(return d=exgcd)
新增了关于xy通解的表述,使得求取xy系数的最小正整数解成为可能
关键性问题【递归原理】【倍率问题】【通解问题(最小正整数解)】
在具体题目的实践中,得出d之后,要与目标等式的D比较,先进行倍率放大,再计算通解
具体实践:ACwing 蓝桥 -五指山 C循环
#include <stdio.h>
#include <algorithm>
#include <iostream>
using namespace std;
int exgcd(int a, int b, int &x, int &y)
{
// 对应 ax + by = gcd( a , b , x , y ) 当前层
// 对应 by + (a%b)x = gcd( b , a%b , y , x ) 底层
// 这样回传的时候x不变,只要动y即可,递推原理看草稿😂🙌👍
// ctrl + , = 设置
// win + . = emoji φ(* ̄0 ̄)ψ(`∇´)ψ₩¥😘👌🌹🎂🐱🐉✔😢🤦♂️✨😃 影月✨暮风 ASRC-2022/11/13
if (!b)
{
x = 1, y = 0;
return a;
}
int d = exgcd(b, a % b, y, x);
y -= a / b * x;
return d;
}
int main()
{
int a, b, x, y, k;
scanf("%d%d", &a, &b);
int d = exgcd(a, b, x, y);
printf("\n一组特解:%d*[%d] + %d*[%d] = %d\n\n", a, x, b, y, d);
while (1)
{
printf("参数k,通解测试,请输入k=");
scanf("%d", &k);
int a1 = a / d, b1 = b / d;
int x1 = x + k * b1;
int y1 = y - k * a1;
printf("%d*[%d] + %d*[%d] = %d\n\n", a, x1, b, y1, a * x1 + b * y1);
}
return 0;
}
/* ASRC 2022/11/13
重点研究项目 · 线性同余方程组 - 拓展欧几里得解法 相关思想研究
【问题描述】
已知两个正整数ab,可以求出其最大公约数d
一定存在两个系数xy(可以是负数)(不唯一)
使得公式 ax + by = d 成立
给你ab两个数字,求出dxy;写出xy通解形式,在通解形式下,求出x的最小正整数解
欧几里得gcd,可以求出最大公约数d
拓展欧几里得在循环过程中,可以顺带求出xy(的一组特解)
【倍率问题】
算出来的d是最小公倍数,方程两侧可以同乘某个系数,两边同时放大k倍
【通解问题】
假设求出特解为x0 y0 ,最大公约数求出来=d
通解形式如下:
a' = a/d
b' = b/d 任意整数k
x = x0 + k*b' 相当于给x mod k*b'
y = y0 - k*a'
【最小正整数解】
最小正整数解,相当于保持整数情况下 实现数学的mod k*b'
假设俩数ab,在c语言机制下,a是大数字,mod到b范围内
ans = ( a%b + b ) %b C语言实现数学机制的mod
a%b将a绝对值压缩到b范围内,+b保障为正数,再mod压缩回b范围内
C语言机制下,负数取得mod依旧会保持为负数;这不符合数学的定义
*/