极光 · 裴蜀定理(exgcd拓展欧几里得算法 / 线性同余方程组)

        简述:ACWING 蓝桥 相较于 基础篇,在exgcd算法上进行了改进,研究发现
算法先进性在于进行了一步易位,底层原理是gcd的一致性(return d=exgcd)

新增了关于xy通解的表述,使得求取xy系数的最小正整数解成为可能
关键性问题【递归原理】【倍率问题】【通解问题(最小正整数解)】

在具体题目的实践中,得出d之后,要与目标等式的D比较,先进行倍率放大,再计算通解

具体实践:ACwing 蓝桥 -五指山 C循环 

#include <stdio.h>
#include <algorithm>
#include <iostream>
using namespace std;

int exgcd(int a, int b, int &x, int &y)
{
    // 对应 ax + by     = gcd( a , b   , x , y )     当前层
    // 对应 by + (a%b)x = gcd( b , a%b , y , x )     底层
    // 这样回传的时候x不变,只要动y即可,递推原理看草稿😂🙌👍
    // ctrl + , = 设置
    // win + . = emoji   φ(* ̄0 ̄)ψ(`∇´)ψ₩¥😘👌🌹🎂🐱‍🐉✔😢🤦‍♂️✨😃 影月✨暮风 ASRC-2022/11/13
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

int main()
{
    int a, b, x, y, k;
    scanf("%d%d", &a, &b);
    int d = exgcd(a, b, x, y);
    printf("\n一组特解:%d*[%d] + %d*[%d] = %d\n\n", a, x, b, y, d);
    while (1)
    {
        printf("参数k,通解测试,请输入k=");
        scanf("%d", &k);
        int a1 = a / d, b1 = b / d;
        int x1 = x + k * b1;
        int y1 = y - k * a1;
        printf("%d*[%d] + %d*[%d] = %d\n\n", a, x1, b, y1, a * x1 + b * y1);
    }
    return 0;
}
/*  ASRC 2022/11/13
重点研究项目 · 线性同余方程组 - 拓展欧几里得解法 相关思想研究



【问题描述】
已知两个正整数ab,可以求出其最大公约数d
一定存在两个系数xy(可以是负数)(不唯一)
使得公式 ax + by = d  成立

    给你ab两个数字,求出dxy;写出xy通解形式,在通解形式下,求出x的最小正整数解

欧几里得gcd,可以求出最大公约数d
拓展欧几里得在循环过程中,可以顺带求出xy(的一组特解)





【倍率问题】
算出来的d是最小公倍数,方程两侧可以同乘某个系数,两边同时放大k倍




【通解问题】
假设求出特解为x0 y0 ,最大公约数求出来=d
通解形式如下:
    a' = a/d
    b' = b/d            任意整数k
    x = x0 + k*b'       相当于给x mod k*b'
    y = y0 - k*a'



【最小正整数解】
最小正整数解,相当于保持整数情况下  实现数学的mod k*b'

假设俩数ab,在c语言机制下,a是大数字,mod到b范围内
    ans = ( a%b + b ) %b   C语言实现数学机制的mod
a%b将a绝对值压缩到b范围内,+b保障为正数,再mod压缩回b范围内
C语言机制下,负数取得mod依旧会保持为负数;这不符合数学的定义

*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

影月丶暮风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值