Estimator::relativePose

Estimator::relativePose 用于判断两帧间的视差是否足够大,当匹配特征点超过二十个时计算平均误差。initialStructure() 函数通过sfm进行三维重建和PnP,结合IMU数据进行初始化。文章讨论了IMU和图像帧的时间对齐及数据处理策略,确保有效数据用于后续处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Estimator::relativePose

relative 判断是否产生足够的位移
用途:判断两帧之间的视差是否足够大

主要思路:若两帧之间的匹配特征点大于二十个,则计算他们的平均误差

涉及变量:

Matrix3d &relative_R:两帧之间的旋转

Vector3d &relative_T,:两帧之间的位移

int &l:暂时未知

Estimator::initialStructure()

bool Estimator::initialStructure()

用途:使用sfm对图像数据进行三维重建,并对所有帧进行pnp,最后和imu联合初始化

主要思路:首先计算速度方差来确定IMU的可观性,然后将f_manage中所有的feature保存到vector sfm_f中,然后判断是否产生足够位移来进行初始化,满足条件则进行sfm重建,最后将所有数据标记为关键帧进行pnp

涉及变量:

const map<int, vector<pair<int, Eigen::Matrix<double, 7, 1>>>> &a

贝叶斯参数估计器是一种在贝叶斯统计理论框架下进行参数估计的方法。在传统频率统计中,参数估计通常是通过最大似然估计或最小均方误差估计来进行的。而在贝叶斯统计中,我们将参数看作是一个随机变量,其具有先验概率分布。当我们获得了一些观测数据后,我们可以通过贝叶斯定理来更新参数的后验概率分布,并根据后验分布来估计参数的值。 贝叶斯参数估计器的核心思想是将观测数据纳入先验信息中,通过贝叶斯定理计算参数的后验概率分布,并根据后验分布来作出参数估计。贝叶斯参数估计器相比于传统频率统计方法有几个优点: 1. 能够容易地将先验信息融入参数估计过程中,这对于缺乏大量观测数据的情况下特别有用。 2. 能够提供参数估计的置信区间,这可以帮助我们更好地理解参数估计的不确定性。 3. 能够在不同现实场景中提供更加通用且健壮的参数估计方法。 但是贝叶斯参数估计器也有一些限制,其中最主要的是需要具有合适的先验分布,并且对于不同的先验分布可能会得到不同的后验分布和参数估计结果。因此,选择合适的先验分布是贝叶斯参数估计中的一个重要问题。 总的来说,贝叶斯参数估计器是一种灵活且强大的参数估计方法,它能够将先验信息纳入参数估计过程中,并且能够提供参数估计的不确定性信息。在实际应用中,我们可以根据具体问题的特点来选择适合的参数估计方法,以获得更加准确和可靠的参数估计结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小秋slam实战

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值