带有回报调整的多跳知识图谱推理(一)

本文探讨了在不完全知识图谱中,如何利用强化学习进行多跳推理以解决问答问题。针对错误负例监督和搜索路径误导的问题,提出了预训练单跳embedding模型和随机边掩码策略,提升现有模型在基准数据集上的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  带有回报调整的多跳知识图谱推理

链接:https://arxiv.org/pdf/1808.10568.pdf

   多跳推理是在不完全知识图谱(KG)上解析问答(QA)的有效方法。这个问题可以由强化学习(RL)进行规划,基于策略的代理持续地扩展推理路径直到到达目标。但在不完全的KG环境中,代理收到由于训练数据中错误负例造成的低质量回报,这降低了测试阶段的泛化能力。此外由于没有黄金标准的行动序列用作训练,代理会被假的搜索轨迹误导,只能偶然地被导向到正确的答案。该文提出两种模型以解决两个问题:(1)采用预训练单跳embedding模型来估计未观察到的事实以减少错误负例监督的影响;(2)让代理以随机生成边掩码的方式探索不同的路径集,以计算对基于策略RL的假路径的敏感性。该方法在几个基准数据集上提升了现有的基于路径的KGQA模型并可以与基于embedding的模型一比。

                                   方法

问题定义

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值