知识图谱-多跳推理问答:概述【TransferNet作者】

本文介绍了知识图谱在复杂问答中的应用,提出了推理过程描述语言KoPL和TransferNet模型。KoPL关注推理过程,解决构造推理数据的难题,而TransferNet则能隐式学习多跳推理过程。实验表明,这些方法在复杂问题问答上表现出色。
摘要由CSDN通过智能技术生成

导读:知识图谱在现有的实际业务中存在着各种各样的应用,问答是其中一个非常重要的应用,本文主要关注如何解决基于知识图谱的复杂问题,该任务又称为推理问答。

本文的介绍会围绕下面四点展开:

  • KBQA背景介绍

  • 构造推理过程数据

  • 跨领域迁移

  • 隐式学习推理过程

一、背景介绍

1、KBQA

首先回顾下什么是知识图谱问答——KBQA。

一个给定的知识图谱,包含了许多信息,如实体、属性以及实体之间的关系。

基于一个已经构建好的知识图谱,我们希望机器能够通过知识图谱来自动回答一些问题,如上图中,提问“勒布朗·詹姆斯生日是什么时候?”,我们希望机器能够给出答案1984年12月30日。

2、简单问答和复杂问答

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值