高维空间中点到超平面的距离可以表示为一个约束优化问题:
{ m i n ∥ x − x 0 ∥ s . t . w T x + b = 0 \left \{ \begin{aligned} &min \quad\ \|x-x_{0}\|\\ &s.t. \quad\ w^{T}x+b=0\\ \end{aligned} \right. {
min ∥x−x0∥s.t. wTx+b=0
其中, x 0 x_{0} x0为平面之外的一点, w T x + b = 0 w^{T}x+b=0 wTx+b=0表示空间中的超平面。上式的含义为求超平面上一点,使其到 x 0 x_{0} x0距离最短。该式等价于
{ m i n 1 2 x T x − x T x 0
高维空间中点到超平面的距离
最新推荐文章于 2025-04-08 09:34:10 发布