高维空间中点到超平面的距离

本文介绍了高维空间中点到超平面距离的数学表达和求解方法,通过约束优化问题和拉格朗日乘子法,解析得出距离公式,并解释了其物理意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高维空间点到超平面距离模型
高维空间中点到超平面的距离可以表示为一个约束优化问题:
{ m i n   ∥ x − x 0 ∥ s . t .   w T x + b = 0 \left \{ \begin{aligned} &min \quad\ \|x-x_{0}\|\\ &s.t. \quad\ w^{T}x+b=0\\ \end{aligned} \right. { min xx0s.t. wTx+b=0
其中, x 0 x_{0} x0为平面之外的一点, w T x + b = 0 w^{T}x+b=0 wTx+b=0表示空间中的超平面。上式的含义为求超平面上一点,使其到 x 0 x_{0} x0距离最短。该式等价于
{ m i n   1 2   x T x − x T x 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值