引言
UCB1(Upper Confidence Bound 1)是一种用于多臂老虎机问题(Multi-Armed Bandit Problem, MAB)的决策算法,旨在最大化累积奖励的同时最小化后悔(regret)。UCB1通过平衡探索(exploration)和利用(exploitation)来选择最优的动作。它特别适用于在线学习和推荐系统等领域。
解释“Bound 1”的含义
- Bound:指的是置信上限(Upper Confidence Bound)。在统计学和机器学习中,置信上限用于估计一个随机变量的真实值范围。对于每个动作,UCB算法不仅考虑其平均奖励,还考虑了该动作被选择次数的不确定性,通过计算置信上限来平衡探索和利用。
- 1:这里的“1”并不表示具体的数值,而是标识这是一个特定的UCB算法版本。UCB1是最早的、最经典的UCB算法之一,它的公式和策略已经被广泛研究和应用。后续的研究中提出了改进或变体,如UCB2等,但UCB1仍然是基础且重要的版本。
1. 算法思想
UCB1的核心思想是基于