迁移学习基础知识(一)——分类及应用

 

适合入门:机器学习的明天——迁移学习

一、迁移学习分类

按照目标域有无标签,迁移学习可以分为监督迁移学习,半监督迁移学习,无监督迁移学习;

按照学习方法分类,迁移学习可以分为基于样本的迁移学习方法(权重重用),基于特征的迁移学习方法(变换特征到表征一致的空间,或者使其相似),基于模型的迁移学习方法(参数共享),基于关系的迁移学习方法(挖掘和利用关系进行类比迁移,研究较少);

按照特征分类,迁移学习可以分为同构迁移学习,异构迁移学习;(同构:特征语义和维度都相同;图片到文本的迁移为异构迁移学习)

按照离线和在线形式可以分为离线迁移学习,在线迁移学习(随着数据的动态加入,迁移学习算法可以不断地更新)。

 

 

二、迁移学习可应用于多个领域

        解决标注数据稀缺性
        非平稳泛化误差分析
        自然语言处理
        计算机视觉
        医疗健康和生物信息学

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值