函数/信号的正交分解(完备正交集中)

声明:https://blog.csdn.net/a493823882/article/details/80500038

1.矢量正交与正交分解

信号分解就是将信号表示成一组相互正交的信号分量之和。

由矢量空间理论可知,任意N维矢量可由N维正交坐标系表示。以二维矢量为例,坐标可表示为

ex与ey为x轴和y轴方向的基向量

满足两个性质:①正交性②单位模特性

矢量空间正交分解的概念可推广到信号空间:类似于任意矢量可以表示为正交基函数的线性组合,在信号空间找到若干个相互正交的信号作为基本信号任意信号也可以表示为正交波形的加权组合

2.函数正交与正交函数集

若n个函数φ1(t),φ2(t),...,φn(t)构成一个函数集,当这些函数在区间(t1,t2)内满足:

则此函数集为在区间(t1,t2)的正交函数集。

对应于矢量分解,i≠j的特性对应于正交性,i=j对应于单位模特性

如果在正交函数集{φ1(t),φ2(t),...,φn(t)}之外,不存在任何函数φ(t)(≠0)能够满足正交条件:

则称此函数集为区间(t1,t2)上的完备正交函数集。

三角函数集{1,cos(Ωt),cos(2Ωt),...,sin(Ωt),sin(2Ωt),...}与虚指数集{e^jΩnt, n∈Z}都是在(t0,t0+T)(t=2π/Ω)上的完备正交函数集。

3.函数(信号)的正交分解

与空间矢量的正交分解相类似,可将(连续时间信号)函数f(t)进行正交展开。

将任一函数f(t)用n个正交函数(φi(t))的线性组合来近似,可表示为:

估计量的误差定义为:

需使误差最小,采用最小均方误差准则(误差的方均值最小)。估计值的均方误差定义为:

为使上式最小(系数Cj变化时,即Cj为变量),有Leibnitz准则(求偏导等于0处取最小值),有:

继续对原式化简,将与Ci无关的项除去后得:

所以此时欲使均方误差最小,第i项φi的系数Ci应该如下取值:

此时的均方误差为:

由均方误差的定义式可见,由于函数平方后再积分,因而J[e(t)]不可能为负,即恒大于等于0。

由上式可见,再用正交函数去近似f(t)时,所取的项数越多,即n越大,均方误差则越小。当n→∞时(完备正交函数集),均方误差为0。

所以关于完备正交函数集有如下两个定理:

(1)任何一个信号f(t)都可以在区间(t1,t2)内精确地表示为这个完备正交函数集中各函数的线性组合,即

其中Ci为加权系数,Ci为

上式称为正交展开式,有时也称为广义傅里叶级数,Ci称为傅里叶系数

注:若基函数满足单位正交性且为实数,即(如,三角函数集满足此条件),那么可写作:

(2)在(1)的条件下,根据此时均方误差为0,可得:

这就是帕塞瓦尔(Parseval)方程(等式)。它表明,在区间(t1,t2),信号f(t)的能量恒等于f(t)在完备正交函数集中分解的各正交分量能量之和。


--------------------- 

最后,感谢作者的分享及公式的编辑,整理的非常不错,讲解很细致,终于看懂了傅里叶级数的由来。
作者:SethChai 
来源:CSDN 
原文:https://blog.csdn.net/a493823882/article/details/80500038 
版权声明:本文为博主原创文章,转载请附上博文链接!

  • 6
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值