考研基础高等数学笔记

目录

 

第一讲 极限

第二讲 导数

第三讲 一元函数积分学

第四讲 多元函数微分学

第五讲 多重积分

第六讲 微分方程

老师的课件


第一讲 极限

考点综述: 定义(4分)   性质(4分)   计算(4+10分)   应用(4分)

定义

  • 函数极限:\forall\varepsilon >0, \exists \delta >0, 当 0<\left | x-x_{0} \right |<\delta时,有\left | f(x) - A \right | < \varepsilon \Leftrightarrow \lim_{x\rightarrow x_{0}}f(x) = A
  • 数列极限:\forall\varepsilon >0, \exists N >0, 当 n > N时,有\left | f(x) - a \right | < \varepsilon \Leftrightarrow \lim_{x\rightarrow \propto }x_{n} = a

用极限定义证明极限

性质

  • 唯一性 (已知极限存在,利用唯一性求方程未知数)
  • 局部有界性(证明开区间内函数有界性)
  • 局部保号性(用于求极值)

计算:\small \frac{0}{0}, \frac{\propto }{\propto },\propto *0,\propto -\propto ,\propto ^{0},0^{0}, 1^{\propto }

化简:

  • 等价无穷小替换:当\small x\rightarrow 0时,\small sinx, arcsinx, tanx, arctanx, ln(1+x), e^{x}-1等价于x。 \small 1-cosx\sim \frac{1}{2}x^{2}, a^{x} - 1\sim xlna, (1+x)^{\alpha } - 1 \sim \alpha x
  • 见根号差用有理化, 有分母考虑通分,没有分母创造分母在通分——倒代换
  • 利用\small f(x)^{g(x)} = e^{g(x)ln(f(x))}等价变型

工具:

  • 洛必达法则 (重要公式\small \frac{\mathrm{d} ln(x+\sqrt{1+x^{2}})}{\mathrm{d} x} = \frac{1}{\sqrt{1+x^{2}}}
  • 泰勒公式:牢记八个基本的泰勒展开式  sin arcsin tan arctan cos 指数,对数, \small (1+x)^{a}

数列极限

  • \small x_{n}易于连续化,转化为函数极限计算(归结原则)
  • \small x_{n}不易连续化,考虑夹逼准则和定积分定义
  • \small x_{n}有递推式\small x_{n}=f(x_{n-1}),用单调有界准则

应用(连续与间断):

可能的间断点:分段函数的分段点。

无定义点:必间断

连续的定义:极限值等于当前点的值

间断点类型:跳跃间断点,可去间断点,无穷间断点,震荡间断点

第二讲 导数

考点综述: 定义(4分)   计算(4)   中值定理(10分)   几何应用(10分)

计算:复合函数求导,隐函数求导,对数求导法,反函数求导,参数方程求导,高阶导数(1.莱布尼兹公式  2.数归法 3.展开式法)通常还用到点火公式

莱氏公式:

  • \small (u\pm v)^{(n)}=u^{n()}\pm v^{(n)}
  • \small (uv)^{(n)} = \sum_{k=0}^{n}C_{n}^{k}u^{n-k}v^{k} 

微分中值定理:

  • 有界性定理(这个定理被柯西用严谨的数据方法证明了,证明方法很精妙)
  • 最值定理
  • 介值定理
  • 零点定理
  • 费马定理(法国)(证):可导的极值点,导数为0
  • 罗尔定理(法国)(证):闭区间连续,开区间可导,端点值相等。则\exists \varepsilon \in (a,b) , 使{f}'(\varepsilon )=0。应用(1.求导函数逆用法。2.积分还原法——可证明拉克朗日和柯西中值定理)
  • 拉克朗日中值定理:(法国)(证):闭区间连续,开区间可导,端点值相等。则\exists \varepsilon \in (a,b) , 使{f}'(\varepsilon )=\frac{f(b) - f(a)}{b-a}。应用(1.将f函数复杂化。2.根据高(低)阶导数求低(高)阶导数
  • 柯西中值定理(法国)(证):闭区间连续,开区间可导, g(x)\neq 0。 则\exists \varepsilon \in (a,b) , 使\frac{​{f}'(\varepsilon )}{​{g}'(\varepsilon )}= \frac{f(b)-f(a)}{g(b)-g(a)}。应用(分母分子一个具体一个抽象
  • 泰勒定理(英国)(也称泰勒公式):拉式余项\frac{f^{(n+1)}(\varepsilon )}{(n+1)}(x-x_{0})^{n+1} 用于证明, 佩氏余项o(x-x_{0})^{n}用于计算
  • 积分中值定理(证):\int_{a}^{b}f(x)dx = f(\varepsilon )(b-a)

欲证f^{(n)}(\varepsilon ) = 0

  • 用费马定理,即找f^{(n-1)}(\varepsilon )的极值点
  • 用罗尔定理,找f^{(n-1)}(a)=f^{(n-1)}(b)
  • 用泰勒展开式

导数的几何应用(三点两性一线) (极值点,最值点,拐点,单调性,凹凸性,渐近线

  • {f}''(x_{0}) = f^{'''}(x_{0}) = f^{(4)}(x_{0}) = ... = f^{(n-1)}(x_{0}) = 0,且f^{(n)}(x_{0})\neq 0,n为奇数,则比为拐点
  • {f}'(x_{0})={f}''(x_{0}) = f^{'''}(x_{0}) = f^{(4)}(x_{0}) = ... = f^{(n-1)}(x_{0}) = 0,且f^{(n)}(x_{0})\neq 0,n为偶数,则比为极值点。f^{(n)}(x_{0})<0极大值,f^{(n)}(x_{0})>0极小值。

渐近线

  • 铅垂渐近线
  • 水平渐近线
  • 斜渐近线(如何判断是否是斜渐近线

第三讲 一元函数积分学

考点综述: 定义     计算      应用

定义:

  • 不定积分
  • 定积分(是面积)
  • 变限积分:({\int_{\varphi_{1} (x)}^{\varphi_{2} (x)}f(t)dt})' = f(\varphi_{2} (x))\varphi_{2} (x)' - f(\varphi_{1} (x))\varphi_{1} (x)'
  • 反常积分(是定积分的推广,也叫瑕积分)

揍微分法(求导的逆运算)(熟记基本求导公式)

  • \frac{du}{\sqrt{u}} = d(2\sqrt{u})
  • \frac{du}{u^{2}}=d(-\frac{1}{u})
  • \frac{du}{\sqrt{1-u^{2}}} = d(arcsinu)
  • \frac{du}{1+u^{2}} = d(arctanu)
  • \frac{u'(x)}{u(x)}dx = d(ln\left | u(x) \right |)
  • \frac{​{u}'(x)}{\sqrt{u(x)}}dx=d(2\sqrt{u(x)})
  • \frac{du}{1+cosu} = \frac{du}{2cos^{2}\frac{u}{2}}=sec^{2}\frac{u}{2}d\frac{u}{2}=dtan\frac{u}{2}
  • \frac{du}{1-cosu}=\frac{du}{2sin^{2}\frac{u}{2}}=csc^{2}\frac{u}{2}d\frac{u}{2}=d(-cot\frac{u}{2})
  • cos2udu=(cos^{2}u - sin^{2}u)du=cos^{2}udu-sin^{2}udu=cosudsinu+sinudcosu=d(sinucosu)
  • d(uv)=vdu+udv

换元法

  • 三角代换(要求保持单调性,可回代):1.\sqrt{a^{2}-x^{2}}\Rightarrow x=asint。2.\sqrt{a^{2}+x^{2}}\Rightarrow x=atant。3.\sqrt{x^{2}-a^{2}}\Rightarrow x=asect 。4.\sqrt{ax^{2}+bx+c}​​先化简,然后再用三角代换​​​​​
  • 倒代换(一般用在分子次数低,分母次数高时):x\Rightarrow \frac{1}{t}
  • 整体复杂代换(复杂部分整体令成t)(根式代换,指数代换,对数代换,反三角函数代换)

分部积分法(反对幂指三):\int udv=uv - \int vdu。推广:\int uv^{(n+1)}dx = uv^{(n)} - \displaystyle {u}'v^{(n-1)} + ... +(-1)^{n}u^{(n)}v + (-1)^{n+1}\int u^{(n+1)}vdx (求导至0,求导至循环,求导至复杂项消失,另1等于u

有理函数积分法

定积分计算

  • 用好基本积分法
  • 用好一些重要公式计算积分(点火公式)

反常积分计算(计算题反常积分一定收敛,方法和基础定积分计算一样

定积分的几何应用:

  • 椭圆面积:\pi ab
  • 摆线面积:3\pi a^{2}
  • 旋转体体积:绕x轴V_{x}=\int_{a}^{b}\pi y^{2}(x)dx。 绕y轴V_{y}=\int_{a}^{b}2 \pi x\left | y(x) \right |dx

第四讲 多元函数微分学

考点综述: 定义 (4分)    计算(10分)      应用(10分)(极值、最值问题)

定义:

  • f(p)=f(x,y)的定义域为D,P_{0}(x_{0}, y_{0})是D的聚点,\forall \varepsilon >0, \exists \delta >0,p(x,y)\in D \cap U(p_{0},\delta )时,均有\left | f(x,y) - A \right |<\varepsilon \Rightarrow \lim_{(x,y)->(x_{0},y_{0})}f(x,y)=A
  • 若f(x,y)在(x_{0}, y_{0})的去心领域有定义,且以任意方向趋向于(x_{0}, y_{0}),均有f(x,y)\rightarrow A,\lim_{(x,y)->(x_{0},y_{0})}f(x,y)=A

多元函数求极限:除洛必达法则、单调有界性、穷举法不能用,可照搬一元函数f(x)求极限的方法,如:1.无穷小*有界变量等于无穷小量 2.等价无穷小代换 3.夹逼准则

多元函数连续性:极限值等于函数值,则连续,否则不连续。

偏导数的定义

求偏导:

  • 链式求偏导法则。
  • 求高阶偏导数:无论对谁求偏导,也无论已经求了几阶偏导,求偏导之后的新函数仍具有与原来函数完全相同的复合结构

多远函数的极值和最值:

  • 导数存在的极值点,偏导数为零
  • 极值的充分条件。
  • 求极值点:1.利用极值必要条件求出可以点。2.用充分条件判别可疑点
  • 条件极(最)值与拉格朗日乘数法:1.构造辅助函数F(x,y,z,\lambda ,\mu )=f(x,y,z) + \lambda \varphi(x,y,z) + \mu \eta (x,y,z)。2.利用极值必要条件求可疑点   3.所有可以点最大值为最大值,最小值为最小值,人工能难判断极值,涉及到一个很有意思的矩阵黑塞矩阵

第五讲 多重积分

核心考点     1.概念        2.计算

普通对称性求积分,只需要求一半,即可得出整块积分

轮换对称性求积分:x,y对调D不变

直角坐标系积分

  • 上下型:后积先定限,限内花直线,先交下曲线,后交上曲线。
  • 左右型:后积先定限,限内花直线,先交左曲线,后交右曲线。

极坐标系下的计算:

  • 当D包含x^{2}+y^{2}这种类型,考虑改成极坐标计算,否则用直角坐标系计算。d \partial = rd\Theta dr

第六讲 微分方程

综述         概念       一阶方程的求解        高阶方程的求解

概念:含有未知数导数的方程称为微分方程。

通解:解中所含的独立常数的个数等于微分方程的阶数(不在通解范围内的解称为奇解)

一阶方程的求解:

  • 变量可分离型:若\frac{dy}{dx}=F(x,y)\Leftrightarrow f(x)g(y)则,\frac{dy}{g(y)}=f(x)dx
  • 齐次型:形如\frac{dy}{dx}=f(\frac{x}{y})。 用变量替换法
  • 一阶线性型:形如{y}' + py = q, 可得y = e^{-\int pdx}[e^{\int pdx}qdx+c]

二(高)阶方程的求解:

  • 二阶常系数线性奇次方程:{y}''+p{y}'+qy=0,p,q为常熟。    1.写特征方程  \lambda ^{2}+p\lambda+q = 0    2.若判别式大于0:y = C_{1}e^{\lambda _{1}x} + C_{2}e^{\lambda _{2}x}, 若判别式等于0:y = (C_{1}+C_{1}x)e^{\lambda x}, 若判别式小于0:\lambda _{1,2} = \alpha +\beta i = -\frac{2}{p}\pm \frac{\sqrt{4q-p^{2}}}{2} i ,y = e^{\alpha x}(C_{1}cos\beta x+C_{2}sin\beta x)
  • 二阶常系数线性非奇次方程:{y}''+p{y}'+qy=e^{\alpha x}P_{m}(x), P_{m}(x)为x的m阶多项式。通解等于奇次方程通解加一个特解。y^{*} = e^{\alpha x}Q_{m}(x)x^{k},Q_{m}(x)为x的m阶一般多项式, 根据\alpha\lambda _{1,2}确定k的值,k的取值为(0,1,2)。

 

老师的课件

来自2018年新东方张宇老师的基础课程。

链接:https://pan.baidu.com/s/1kGz_BEJKzKPd-WwjaVLhoQ 
提取码:k468 

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值