状态估计
文章平均质量分 76
leeayu
热爱机器人,主要兴趣:slam,机器人定位感知
展开
-
手写高斯牛顿求解非线性最小二乘问题
【代码】手写高斯牛顿求解非线性最小二乘问题。原创 2024-08-04 00:33:36 · 261 阅读 · 0 评论 -
状态估计中的概率基础
高斯分布是一个理想的分布,在真实世界中,模型往往是非线性非高斯的,为了方便处理,我们经常在使用高斯分布来近似表示真实世界中的PDF的某个点。请注意公式⾥⾯的 p(x) 是概率密度(probability density)⽽不是概率(probability)。变形之后就是贝叶斯公式,这条公式在状态估计中会被反复使用,是最核心的公式,公式本身没有任何假设。计算高斯分布的变换的关键就是计算均值和协方差,直接按照公式去推导即可。P(y)的计算方式就是把x通过积分来边缘化掉的。的条件下的PDF如下。原创 2024-08-02 12:07:37 · 1033 阅读 · 0 评论 -
从零真正理解SLAM中的边缘化---------详细的理论细节推导
文章目录1 边缘化是什么2 实际SLAM中的优化问题构建2.1 线性高斯系统优化问题的构建(参考状态估计这本书,本节只是简介使得文章前后保持连续性)2.2 非线性非高斯系统(Non Linear Non Gaussian,NLNG)优化问题构建2.3 NLNG问题的Batch形式(实际SLAM优化多帧pose和多路标点的情况)2.4 使用高斯牛顿法求解2.5 考虑一个小的优化问题:仅包含观测模型3 边缘化(Marginalization)3.1 边缘化想做什么事情3.2 边缘化过程详细步骤(以VINS-MO原创 2024-08-01 12:56:37 · 549 阅读 · 0 评论 -
如何直观的理解最大似然估计?
文章目录1 最大似然估计 maximum likelihood estimate2 几个概率相关的函数2.1 累积分布函数Cumulative Distribution Function(CDF)2.2 概率密度函数Probability Density Function(PDF)2.3 概率质量函数probability mass function(PMF)1 最大似然估计 maximum l...原创 2019-03-30 10:55:42 · 1807 阅读 · 0 评论 -
最优加权最小二乘估计
文章目录Reference最小二乘估计加权最小二乘估计ReferenceMatrix Differentiation加权最小二乘法与局部加权线性回归卡尔曼滤波与组合导航原理(1-2讲)最小二乘估计Z=HX+VZ = HX + VZ=HX+Vwhere, Z is the mmm dimension observation vector; XXX is a nnn dimension state vector; HHH is a m∗nm * nm∗n matrix; VVV is noi原创 2021-05-09 14:06:11 · 3968 阅读 · 0 评论 -
如何在基于滤波框架的绝对定位系统中融合相对观测
以无人驾驶定位系统为例,融合gnss,imu,轮速,camera LaneMatch(frame to map),lidar scan match(frame to map)。如何融合LIO、VIO这类帧间相对观测呢?本文讨论滤波框架下如何融合LIO,VIO相对观测。原创 2024-07-31 11:14:36 · 170 阅读 · 0 评论 -
MSCKF中的观测模型
这个地方使用QR分解来降低算法复杂度,参见。最后计算K的时候需要求解。原创 2024-07-31 11:02:22 · 571 阅读 · 0 评论 -
MSCKF里面的两个实用算法策略
以在无人车定位系统中融合GNSS,IMU,轮速,camera/lidar frame to map pose为例,想要在这个绝对定位系统中继续融合LO、VIO的relative pose该怎么做呢?(这里只考虑松耦合)原创 2024-07-31 10:57:53 · 809 阅读 · 0 评论 -
MSCKF中的camera状态增广
在MSCKF的状态增广公式中不考虑噪声R,所以协方差变换结果就是。是相机pose和imu pose的外参公式构成的非线性函数。对 imu error state的导数。考虑imu和camera之间的外参数。下图是来自《机器人学的状态估计》原创 2024-07-31 09:18:39 · 299 阅读 · 0 评论 -
矩阵常见分解算法及其在SLAM中的应用
酉矩阵,正交矩阵A的元素是属于复数域矩阵,如果AA∗IAA^{*} = IAA∗I,那么A是属于酉矩阵(Unitary Matrix)A的元素是属于实数域矩阵,如果AATIAA^{T} = IAATI,那么A是属于正交矩阵(Orthogonal Matrix),当然也是Unitary Matrix埃尔米特矩阵,对阵矩阵A的元素是属于复数域矩阵,如果AA∗A = A^{*}AA∗,那么A是属于埃尔米特矩阵(Hermitian Matrix)原创 2024-07-30 17:18:58 · 890 阅读 · 0 评论 -
理解全贝叶斯估计(Full Beyes Estimation)
【代码】理解全贝叶斯估计(Full Beyes Estimation)原创 2024-07-22 13:30:34 · 168 阅读 · 0 评论