Reference
最小二乘估计
Z
=
H
X
+
V
Z = HX + V
Z=HX+V
where, Z is the
m
m
m dimension observation vector;
X
X
X is a
n
n
n dimension state vector;
H
H
H is a
m
∗
n
m * n
m∗n matrix;
V
V
V is noise vector,
E
(
V
)
=
0
,
C
o
v
(
V
)
=
E
(
V
V
T
)
=
R
E(V) = 0, Cov(V) = E(VV^T) = R
E(V)=0,Cov(V)=E(VVT)=R
优化方程如下
m
i
n
∣
∣
Z
−
H
X
∣
∣
2
min ||Z-HX||^2
min∣∣Z−HX∣∣2
对 X X X求导,令其结果为0, 求出 X X X的最小方差估计
X ^ = ( H T H ) − 1 H T Z \hat{X} = (H^TH)^{-1}H^TZ X^=(HTH)−1HTZ
加权最小二乘估计
优化方程如下,相当与加入了信息矩阵(协方差矩阵的逆)
m
i
n
(
Z
−
H
X
)
T
R
−
1
(
Z
−
H
X
)
min (Z-HX)^TR^{-1}(Z-HX)
min(Z−HX)TR−1(Z−HX)
对
X
X
X求导,令其结果为0, 求出
X
X
X的最优估计
X
^
=
(
H
T
R
−
1
H
)
−
1
H
T
R
−
1
Z
\hat{X} = (H^TR^{-1}H)^{-1}H^TR^{-1}Z
X^=(HTR−1H)−1HTR−1Z
递推最小二乘法
分别对方差阵和状态估计进行递推,其实就是用上一时刻信息来表示当前状态的估计
由于从
P
k
−
1
P_{k-1}
Pk−1计算
P
k
P_k
Pk需要求逆,这太烦了,利用矩阵求逆的公式。大概思路是,
A
A
A是一个分块矩阵,写成两个三角阵的矩阵乘积,然后求inverse得到对应的求逆公式。