最优加权最小二乘估计

Reference

最小二乘估计

Z = H X + V Z = HX + V Z=HX+V
where, Z is the m m m dimension observation vector; X X X is a n n n dimension state vector; H H H is a m ∗ n m * n mn matrix; V V V is noise vector, E ( V ) = 0 , C o v ( V ) = E ( V V T ) = R E(V) = 0, Cov(V) = E(VV^T) = R E(V)=0,Cov(V)=E(VVT)=R

优化方程如下
m i n ∣ ∣ Z − H X ∣ ∣ 2 min ||Z-HX||^2 min∣∣ZHX2

X X X求导,令其结果为0, 求出 X X X的最小方差估计

X ^ = ( H T H ) − 1 H T Z \hat{X} = (H^TH)^{-1}H^TZ X^=(HTH)1HTZ

加权最小二乘估计

优化方程如下,相当与加入了信息矩阵(协方差矩阵的逆)
m i n ( Z − H X ) T R − 1 ( Z − H X ) min (Z-HX)^TR^{-1}(Z-HX) min(ZHX)TR1(ZHX)

X X X求导,令其结果为0, 求出 X X X的最优估计
X ^ = ( H T R − 1 H ) − 1 H T R − 1 Z \hat{X} = (H^TR^{-1}H)^{-1}H^TR^{-1}Z X^=(HTR1H)1HTR1Z

递推最小二乘法

在这里插入图片描述
分别对方差阵和状态估计进行递推,其实就是用上一时刻信息来表示当前状态的估计
在这里插入图片描述
在这里插入图片描述

由于从 P k − 1 P_{k-1} Pk1计算 P k P_k Pk需要求逆,这太烦了,利用矩阵求逆的公式。大概思路是, A A A是一个分块矩阵,写成两个三角阵的矩阵乘积,然后求inverse得到对应的求逆公式。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值