随着人工智能(AI)与计算机技术的不断融合,高中教育正迎来数字化教学模式的全面革新。本研究深入探索了这一背景下高中教育数字化教学模式的构建与实施,旨在为高中教育改革提供科学依据和实践路径。研究通过综合分析国内外数字化教学的现状,结合认知主义学习理论、建构主义学习理论等,设计了以学生为中心、融合创新、互动协作、评估反馈的数字化教学模式。该模式以智能化教学平台为核心,通过教学资源层、教学平台层、学习路径层和教学评估层的整体架构设计,实现了智能化教学资源推荐、学习路径规划、学习过程监测以及教学互动与协作等功能。在某高中的试点实施中,这一数字化教学模式显著提升了学生的学习兴趣、参与度以及学习效果,其中个性化学习路径的推荐与优化成为关键亮点。通过构建包括学习兴趣、学习效果、学习过程监测和教师反馈在内的效果评估指标体系,本研究对试点效果进行了全面评估,进一步验证了数字化教学模式的有效性和可行性。
研究还表明,智能化教学平台在资源推荐、路径规划及过程监测等方面的智能化处理,不仅满足了学生的个性化学习需求,还促进了教学资源的优化配置和教学过程的动态调整。此外,试点案例中小李学生的数学成绩和学习兴趣的显著提升,充分展示了数字化教学模式在实际应用中的潜力和价值。这些发现不仅为高中教育数字化教学模式的构建提供了有益的参考,也为未来进一步探索和优化数字化教学策略提供了方向。未来研究可进一步关注不同学科背景下的数字化教学模式适应性、学生差异性的应对策略以及智能化教学平台的持续优化等方面,以期在高中教育改革中发挥更大的作用。
关键词:人工智能;计算机技术;高中教育;数字化教学模式;智能化教学平台;个性化学习路径
ABSTRACT
With the continuous integration of artificial intelligence (AI) and computer technology, high school education is ushering in a comprehensive reform of digital teaching models. This study deeply explores the construction and implementation of digital teaching models in high school education under this background, aiming to provide scientific basis and practical path for high school education reform. The study comprehensively analyzed the current situation of digital teaching at home and abroad, combined with cognitive learning theory, constructivist learning theory, etc., and designed a student-centered, innovative, interactive, collaborative, and evaluative feedback digital teaching model. This model is centered around an intelligent teaching platform, and through the overall architecture design of the teaching resource layer, teaching platform layer, learning path layer, and teaching evaluation layer, it achieves functions such as intelligent teaching resource recommendation, learning path planning, learning process monitoring, and teaching interaction and collaboration. In the pilot implementation of a certain high school, this digital teaching model significantly improved students' learning interest, participation, and learning effectiveness, with personalized learning path recommendation and optimization becoming key highlights. By constructing an evaluation index system that includes learning interest, learning effectiveness, learning process monitoring, and teacher feedback, this study comprehensively evaluated the pilot effect and further verified the effectiveness and feasibility of the digital teaching model.
The research also shows that the intelligent processing of resource recommendation, path planning, and process monitoring in intelligent teaching platforms not only meets the personalized learning needs of students, but also promotes the optimization of teaching resource allocation and dynamic adjustment of teaching processes. In addition, the significant improvement in mathematics scores and learning interest of primary and secondary school students in the pilot case fully demonstrates the potential and value of digital teaching models in practical applications. These findings not only provide useful references for the construction of digital teaching models in high school education, but also provide direction for further exploration and optimization of digital teaching strategies in the future. Future research can further focus on the adaptability of digital teaching models under different disciplinary backgrounds, coping strategies for student differences, and continuous optimization of intelligent teaching platforms, in order to play a greater role in high school education reform.
Keywords: artificial intelligence; Computer technology; High school education; Digital teaching mode; Intelligent teaching platform; Personalized learning path
目录