Python opencv(10)图像的加噪

为了检验实验图像识别的效果,需要对加了噪声的图像进行识别。机器学习算法不能只是对清晰的图片有较好识别效果,对于不清晰的图像也应该较好地识别。
在图像的随机位置处把像素点的值设为某个值,如(25,20,20),如果像素点已经是灰度化了的,把值设为255,当像素点的数量较多时,便得到了有噪声的图像,如下面的程序设置了100000个点。

import cv2
import numpy as np
fn = "baboon.jpg"
if __name__ == '__main__':
    print 'load %s ...' % fn
    img = cv2.imread(fn)
    coutn = 100000
    for k in xrange(0,coutn):
        #get the random point
        xi = int(np.random.uniform(0,img.shape[1]))
        xj = int(np.random.uniform(0,img.shape[0]))
        #add noise
        if img.ndim == 2:
            img[xj,xi] = 255
        elif img.ndim == 3:
            img[xj,xi,0] = 25
            img[xj,xi,1] = 20
            img[xj,xi,2] = 20
    cv2.namedWindow('img')
    cv2.imshow('img',img)
    cv2.waitKey()
    cv2.destroyAllWindows()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值