第十一讲 二阶齐次线性ODE相关理论

这篇博客介绍了二阶齐次线性微分方程的理论,包括标准形式、通解概念、叠加原理、线性算子性质,以及解的正交化和存在唯一性定理。通过例题展示了如何求解特定的微分方程,并解释了为何某些解是所有解的情况。
摘要由CSDN通过智能技术生成

一,二阶齐次线性ODE的标准形式:

       {y}''+p(x){y}'+q(x)y=0

二,通解:

       y=c_{1}y_{1}+c_{2}y_{2}y_{1}y_{2}线性无关,即:y_{1}\neq cy_{2}y_{2}\neq cy_{1}

三,问题1:为什么c_{1}y_{1}+c_{2}y_{2}是方程的解?

  • 叠加原理:如果y_{1}y_{2}是齐次线性ODE的解(不一定是二阶),那么y_{1}y_{2}的线性组合c_{1}y_{1}+c_{2}y_{2}也是方程的解
  • 利用线性算子证明叠加原理:
  1. 把标准形式化为:D^{2}y+pDy+qy=0
  2. D为微分算子,D表示y被微分一次,D^{2}表示y被微分两次
  3. 式子也可以表示为(D^{2}+pD+q)y=0,但D和y不是乘积关系,而是D作用于y
  4. D^{2}+pD+q为线性算子,用L代替
  5. 式子变为:Ly=0
  6. L=D^{2}+pD+q是一个关于x的函数(黑匣子),输入u(x),输出v(x)
  7. 因为Ly=0,L的输出v(x)=0,据此倒推u(x)
  8. 线性算子L的性质:L(u_{1}+u_{2})=L(u_{1})+L(u_{2})L(cu)=cL(u)
  9. 微分算子D也是线性算子,因为求导运算符合线性运算:{(u_{1}+u_{2})}'={(u_{1})}'+{(u_{2})}'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值