一,用比较审敛法的原因
- 对于大多数级数,很难得到部分和
的表达式,因此很难用定义
来研究其敛散性
- 比较审敛法不能用于非正项级数
二,正项级数
- 定义:
,其中
- 部分和
为单调递增数列
- 收敛的充要条件:
有上界
- 推论:若
无界,则
发散,且
- 正项级数结合律:发散+发散=发散
三,正项级数的比较审敛法
- 设
和
是正项级数,且
,(
)
- 若
收敛,则
收敛
- 若
发散,则
发散
四,p-级数的敛散性
- 定义:
,(
)
- 当
时:
,因为
发散,所以
也发散
- 当
时:
收敛,如图:
五,常用来进行比较的两类正项级数
六,例题
七,比较审敛法的推论
- 设
和
是正项级数,且
,(
),(
)
- 若
收敛,则
收敛
- 若
发散,则
发散
八,比较审敛法的极限形式
- 设
和
是正项级数
- 若
和
是同阶无穷小:
,(
),则
和
具有相同的敛散性
- 补充:若
,当低阶无穷小级数
收敛,则高阶无穷小级数
也收敛
- 因此,只要找到
的同阶(等价)无穷小
,判断
的敛散性,就可以知道
的敛散性
- 例题,如图:
九,极限审敛法
- 设
是正项级数的通项
- 若
,(
)
- 则
和
具有相同的敛散性
十,正项级数的特殊性质
- 设
和
是正项级数
- 若
和
都收敛,则
收敛,
收敛
- 若
收敛,则
收敛,
收敛