一,用比较审敛法的原因
- 对于大多数级数,很难得到部分和的表达式,因此很难用定义来研究其敛散性
- 比较审敛法不能用于非正项级数
二,正项级数
- 定义:,其中
- 部分和为单调递增数列
- 收敛的充要条件:有上界
- 推论:若无界,则发散,且
- 正项级数结合律:发散+发散=发散
三,正项级数的比较审敛法
- 设和是正项级数,且,()
- 若收敛,则收敛
- 若发散,则发散
四,p-级数的敛散性
- 定义:,()
- 当时:,因为发散,所以也发散
- 当时:收敛,如图:
五,常用来进行比较的两类正项级数
六,例题
七,比较审敛法的推论
- 设和是正项级数,且,(),()
- 若收敛,则收敛
- 若发散,则发散
八,比较审敛法的极限形式
- 设和是正项级数
- 若和是同阶无穷小:,(),则和具有相同的敛散性
- 补充:若,当低阶无穷小级数收敛,则高阶无穷小级数也收敛
- 因此,只要找到的同阶(等价)无穷小,判断的敛散性,就可以知道的敛散性
- 例题,如图:
九,极限审敛法
- 设是正项级数的通项
- 若,()
- 则和具有相同的敛散性
十,正项级数的特殊性质
- 设和是正项级数
- 若和都收敛,则收敛,收敛
- 若收敛,则收敛,收敛