第四讲 比值、根值和积分审敛法

一,正项级数的比值审敛法

  • \sum_{n=1}^{\infty }u_{n}是正项级数,且\lim_{n\rightarrow \infty }\frac{u_{n+1}}{u_{n}}=l0\leq l\leq +\infty
  • 0\leq l< 1,则\sum_{n=1}^{\infty }u_{n}收敛
  • 1< l\leq +\infty,则\sum_{n=1}^{\infty }u_{n}发散
  • l=1\lim_{n\rightarrow \infty }\frac{u_{n+1}}{u_{n}}不存在,则\sum_{n=1}^{\infty }u_{n}无法判断敛散性
  • 例题,如图:

二,正项级数的根值审敛法

  • \sum_{n=1}^{\infty }u_{n}是正项级数,且\lim_{n\rightarrow \infty }\sqrt[n]{u_{n}}=l0\leq l\leq +\infty
  • 0\leq l< 1,则\sum_{n=1}^{\infty }u_{n}收敛
  • 1< l\leq +\infty,则\sum_{n=1}^{\infty }u_{n}发散
  • l=1\lim_{n\rightarrow \infty }\sqrt[n]{u_{n}}不存在,则\sum_{n=1}^{\infty }u_{n}无法判断敛散性
  • \lim_{n\rightarrow \infty }\frac{u_{n+1}}{u_{n}}=\lim_{n\rightarrow \infty }\sqrt[n]{u_{n}}
  • \lim_{n\rightarrow \infty }\sqrt[n]{a}=1\lim_{n\rightarrow \infty }\sqrt[n]{n}=1
  • 例题,如图:

三,正项级数的积分审敛法

  • 设函数f(x)在区间[1,+\infty )连续,非负,单调递减
  • 则级数\sum_{n=1}^{\infty }f(n)与广义积分\int_{1}^{+\infty }f(x)dx具有相同的敛散性
  • 例题,如图:

四,正项级数的拉阿伯(Raabe)审敛法

  • 21
    点赞
  • 88
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值