微分方程
qq_53766976
这个作者很懒,什么都没留下…
展开
-
第一讲 ODE几何方法
一,OED是常微分方程的英文缩写,一般形式是;二,表示向量场(斜率场),它的解(原函数)表示积分曲线;三,什么是向量场和积分曲线(见视频6:45~9:10);四,如何做向量场: 电脑方法:等距取点→计算各个点的斜率,并画出斜率向量 人脑方法:将微分方程化成标准型,排除式中无意义的点 →根据固定的斜率,求...原创 2018-10-04 20:37:01 · 1574 阅读 · 1 评论 -
可降阶的高阶微分方程
一,n阶微分方程的一般形式或 通解:二,n阶微分方程思路:这种n阶微分方程可以通过n次积分求出通解 三,特殊的二阶微分方程第一种:,不显含y 思路:令,则原方程化为,解出p的通解,再还原成,得y的通解 第二种:,不显含x 思路:令,,原方程化为,解出p的通解,再还原成,得y的通解 ...原创 2018-12-08 11:53:34 · 11881 阅读 · 0 评论 -
第二十二讲 延迟定理
一,单位阶跃函数:如图:,它有三个定义: 设为单位阶跃函数,那么表示单位阶跃函数向右平移a个单位,如图: 二,单位方框函数: 如图: 意义:去掉了在区间以外的部分。三,单位阶跃函数的拉普拉斯变换: 因为当时,,所以: , (查表)四,逆变换的唯一性:如图: 因为拉普拉斯变换只关注这段区间,所以在这段区间内相等的函数,变换后的结果相等(无法区别)...原创 2018-12-21 04:23:17 · 15444 阅读 · 1 评论 -
第二十讲 拉普拉斯变换求解线性ODE
一,拉氏变换公式:,二,保证的拉氏变换存在的条件:只有在收敛的情况下,拉氏变换才存在 增长条件:保证拉氏变换存在的前提是的增长速度不能超过的收敛速度, 指数型表达法:,,, 正例: 反例:,因为 ,因为,,三,导数的拉氏变换:解微分方程: 设初始条件:, 一阶导数的拉氏变换:(分部积分) 要使,必须满足增长条件:,,,,或者说 代入初始条件:...原创 2018-12-13 17:14:04 · 3744 阅读 · 0 评论 -
第二十二讲 延迟定理(补充)
八,计算:已知 因为当时,,因此可以用延迟定理 根据延迟定理1: 同理: 因此九,计算:因为当时,,因此可以用延迟定理 根据延迟定理2: 因此 图像见视频35:00~36:40十,计算: 当表达式中存在指数时,如,就要用到逆变换的唯一性: 利用延迟定理1: 因此 当时,, 当时,, 结果...原创 2018-12-21 20:30:31 · 3278 阅读 · 0 评论 -
第二十三讲 狄拉克函数(冲激函数)
一,脉冲及建立模型在一个时间区间上的作用等于,如果是恒定的,则 如图: 在小车上作用一个脉冲(一个力使小车左移或右移一段时间),假设时间从0到h,冲量是1(曲线下的面积是1)如图: 假设没有阻尼,弹簧常数,建立数学模型(参照第九讲): 因为,是单位方框函数(参考第二十二讲) 所以二,用拉普拉斯变换解这个微分方程(参考第二十讲):初始条件:, 第一步:两边拉氏变换左边...原创 2018-12-22 02:49:21 · 8743 阅读 · 0 评论 -
第二十三讲 狄拉克函数(冲激函数)(补充)
四,例题: 如图,假设没有阻尼,弹簧常数,在的瞬间,输入一个冲量A,单位冲量为 建立数学模型: 初始条件:(初始位置),(初始速度) 第一步:两边拉式变换左边: 代入初始条件:, 左边: 右边:(利用延迟定理1) 左边等于右边:第二步:解出第三步:拉式逆变换(查表) (查表) 因为中含有指数函数,因此要用到逆变换的唯一性 利用延迟定理1: 因此 当时, 当...原创 2018-12-22 06:05:51 · 2577 阅读 · 0 评论 -
第二十四讲 一阶常微分方程组
一,常微分方程组:必须满足:自变量只有1个,因变量有多个 一阶形式:,,x和y是因变量,t是自变量二,什么样的常微分方程组是线性方程组?必须满足:x和y以线性形式出现 例如:,,a、b、c和d可以是t的函数三,什么样的线性方程组是常系数方程组?必须满足:a、b、c和d都是常数 例如:,四,什么样的常系数方程组是齐次的?必须满足:, 例如:,五,初始条件:需要初始...原创 2018-12-24 11:42:07 · 7792 阅读 · 1 评论 -
第二十五讲 用线性代数解微分方程组
一,上一讲的例题,如图:设x=T1x=T_1x=T1,y=T2y=T_2y=T2方程组为·:{x′=−2x+2yy′=2x−5y\left\{\begin{matrix}{x}'=-2x+2y\\ {y}'=2x-5y\end{matrix}\right.{x′=−2x+2yy′=2x−5y用消元法求出的通解为:{x=c1e−t+c2e−6ty=1...原创 2019-01-25 10:34:17 · 3510 阅读 · 0 评论 -
第二十七讲 微分方程组解的图像
一,竞争模型(含参数的微分方程组):{x′=−x+byy′=cx−3y\left\{\begin{matrix}{x}'=-x+by \\ {y}'=cx-3y\end{matrix}\right.{x′=−x+byy′=cx−3y这个模型是上海和北京之间的旅游竞争,两个地方都忙于做广告,想要吸引游客x′{x}'x′代表上海,y′{y}...原创 2019-02-01 17:36:40 · 2661 阅读 · 0 评论 -
第二十八讲 解非齐次线性方程组
一,关于二阶方程组x⃗′=Ax⃗{\vec{x}}'=A\vec{x}x′=Ax的理论(对n阶方程也成立):(假设A是常数矩阵)定理A:x⃗′=Ax⃗{\vec{x}}'=A\vec{x}x′=Ax的通解是x⃗=c1x1⃗+c2x2⃗\vec{x}=c_{1}\vec{x_{1}}+c_{2}\vec{x_{2}}x=c1x1+c2x2(x1⃗...原创 2019-02-02 17:31:47 · 1651 阅读 · 0 评论 -
第二十九讲 求方程组通解和特解的公式(矩阵指数)
一,齐次方程组的通解:通解形式:x⃗=c1x1⃗+c2x2⃗\vec{x}=c_{1}\vec{x_{1}}+c_{2}\vec{x_{2}}x=c1x1+c2x2用基本矩阵简化为:x⃗=[x1⃗x2⃗][c1c2]=Xc⃗\vec{x}=\begin{bmatrix}\vec{x_{1}} & \vec{x_{2}}\end{bmatrix}\begin{bmat...原创 2019-02-03 15:48:08 · 16637 阅读 · 0 评论 -
第三十讲 解耦
一,线性的变量代换:耦合的方程组:{u=ax+byv=cx+dy\left\{\begin{matrix}u=ax+by\\ v=cx+dy\end{matrix}\right.{u=ax+byv=cx+dy,求u,v解耦后的两个一阶方程:{u′=k1uv′=k2v\left\{\begin{matrix}{u}'=k_{1}u \\ {v}'=k_{2}...原创 2019-02-05 17:09:26 · 2984 阅读 · 0 评论 -
第三十一讲 非线性微分自治方程组及图解
一,非线性一阶微分自治方程组的一般形式:{x′=f(x,y)y′=g(x,y)\left\{\begin{matrix}{x}'=f(x,y)\\ {y}'=g(x,y)\end{matrix}\right.{x′=f(x,y)y′=g(x,y)等式右边不显含变量t等式右边是非线性函数(如三角函数、二次项)二,例题(含阻尼的非线性摆):如图,一根木...原创 2019-02-06 17:14:46 · 2396 阅读 · 0 评论 -
第三十二讲 极限环
一,预备知识:非线性一阶微分自治方程组的一般形式:{x′=f(x,y)y′=g(x,y)\left\{\begin{matrix}{x}'=f(x,y)\\ {y}'=g(x,y)\end{matrix}\right.{x′=f(x,y)y′=g(x,y)等式右边不显含变量t等式右边是非线性函数(如三角函数、二次项)速度场:F⃗=fi^+gj^=x′...原创 2019-02-07 15:28:38 · 16965 阅读 · 0 评论 -
第三十三讲 非线性方程组化为一阶方程
一,预备知识非线性自治微分方程组:{dxdt=f(x,y)dydt=g(x,y)\left\{\begin{matrix}\frac{dx}{dt}=f(x,y)\\ \frac{dy}{dt}=g(x,y)\end{matrix}\right.{dtdx=f(x,y)dtdy=g(x,y)图像是一个速度场:F⃗=fi^+gj^\vec{F}=f\widehat{i}+g\widehat...原创 2019-02-09 10:34:38 · 1673 阅读 · 0 评论 -
第二十一讲 卷积公式
一,卷积公式:已知:, 设: 求: 因为拉氏变换是由幂级数变过来的,所以上面的问题可以转换为下面的问题方便计算:已知:, 设: 求:,(求解过程省略)解得卷积公式: 文字解读:两个函数的乘积,等于分别将它们变换后的乘积,再逆变换的结果,由于被变换卷在了一起,因此称为卷积。 满足交换律:二,例1:求: 代入卷积公式: 验证:因为:,, 所以:三,例2:求...原创 2018-12-16 18:46:42 · 7781 阅读 · 0 评论 -
第十七讲 利用傅里叶级数求特解
一,几何变换法,求傅里叶级数:假设是周期,的函数,求它的傅里叶级数。如图1: 第一步,求周期的函数的傅里叶级数。如图2: 因为是奇函数, 当,;当, 因此,前提: 第二步,将压缩成,周期改变,变,如图3: 的周期,,振幅是的一半: 基频率, 将替换:,前提: 用上一节拓展1的公式验证答案:因为是奇函数, 当,;当, 因此,前提:第三步,将图3上移1...原创 2018-11-20 20:27:57 · 1011 阅读 · 0 评论 -
第十九讲 拉普拉斯变换引入
一,从傅里叶变换到拉普拉斯变换:傅里叶变换: 拉普拉斯变换:,其中为衰减因子, 为什么要在傅里叶变换中乘上衰减因子? 因为当非周期函数随时间单调递增或单调递减,趋于无穷大(直男)时,无法使用傅里叶变换,如图: 因此给乘上衰减因子,使其在远处逐渐衰减下来(被掰弯),就可以用傅里叶变换了,如图(红色): 令,s表示拉普拉斯算子 拉普拉斯变换标准形式: 收敛域,如图(红色...原创 2018-12-10 21:40:19 · 2373 阅读 · 0 评论 -
第六讲 复数和复指数
一,复数的除法: 复数变实数,需要用到共轭性质:,,二,计算: 分子分母同乘以分母的共轭复数:三,复数的极坐标形式: r:模 :幅角四,欧拉公式: 输入的是实数,输出的是复数,它的一般形式是,这种函数叫实变量复(数)值函数五,指数函数的性质:指数函数的运算法则(指数率):,或者; 的求导法则:,或者 当时:,或者 ...原创 2018-10-12 09:48:14 · 26483 阅读 · 1 评论 -
第七讲 一阶常系数线性ODE
一,一阶常系数线性ODE一般形式: ,k>0 详见第三讲的温度—浓度模型。就是把一阶线性ODE标准形式中的换成常系数k,换成,其中y是t的函数,k>0。二,输入—响应: 是输入项,参照“温度—浓度模型”中温度和浓度是从外向里输入 解是响应项三,输入叠加原理:如果输入,产生响应;输入,产生响应 那么输入,产生响应;输入,产生响应 必须是...原创 2018-10-14 09:18:49 · 1170 阅读 · 0 评论 -
第二讲 ODE欧拉数值方法
一,数值方法是解微分方程的主要方法;二,IVP初值问题:一阶微分方程 ,和初始点,联立的方程组;三,欧拉数值方法:找到初始点 根据微分方程,求出初始点斜率 设步长为 求 求 ……循环迭代 也可以用表格的方法来做,见视频10:00~15:50四,欧拉数值方法的问题:计算结果的误差偏高还是偏低?如果解是凹函数,则偏低;如果解是凸函数,则偏高 判断初始点附近的函...原创 2018-10-05 15:44:44 · 1405 阅读 · 0 评论 -
第三讲 一阶线性ODE
一,一阶线性ODE的一般形式: 二,标准形式: 如果或,则方程为齐次方程三,“温度—浓度”模型:假设用半透膜(只能渗透盐的膜)包裹着淡水放进已加热的盐水里,淡水的温度是,盐水的温度是, 建立温度扩散的微分方程(牛顿冷却定律):,t表示时间,k表示热导率,k>0 初始条件: 假设淡水的浓度是,盐水的浓度是 建立浓度扩散的微分方程:,表示扩散率 初始条件...原创 2018-10-06 22:41:16 · 1842 阅读 · 0 评论 -
第八讲 一阶常系数线性ODE(续)
一,用直角坐标法,去掉中虚数部分: 去掉虚数部分:二,将直角坐标法的解化成极坐标法的解(方便观察幅值和相位): 利用三角恒等式:,,作图见视频9:00~10:00 三,证明,: 向量法: 复数法:,方程两边去掉虚数即证。 视频13:00~22:00四,一阶线性ODE的应用:,k>0,应用:浓度—扩散模型 如图 这是一个水池,内...原创 2018-10-17 10:52:43 · 456 阅读 · 0 评论 -
第九讲 二阶齐次常系数线性ODE
一,标准形式: ,A和B是常数二,求特征方程:设,t是自变量 , 标准形式化为: 两边同时除以,得特征方程:三,解特征方程得通解,特征根有三种情况:r是两个不同的实数:,通解: 、为方程的两个解,且线性无关 、为任意常数 设初始条件、,建立方程组,解出、 将、代入通解,解得特解r是一对共轭复数:,是复函数 定理:如果复函数是实微分方程的解,那...原创 2018-10-21 18:53:41 · 1561 阅读 · 0 评论 -
第四讲 一阶线性ODE换元法
一,一阶线性ODE通常只有两种解法:分离变量法和积分因子法 求解其他一阶微分方程需要先用换元法,化成可用以上两种方法求解的方程二,尺度变换(拉伸或压缩坐标轴的方法):,,a、b是常数尺度变换的好处:可以改变物理使用的单位; 可以使物理变量无量纲化; 减少或简化方程中的常数(视频例子5:20~10:40);三,换元法可以分为两类:直接代换:新变量={含老变量的方程},例,设新...原创 2018-10-08 15:58:23 · 1446 阅读 · 0 评论 -
第五讲 一阶自治ODE
一,一阶自治ODE的形式: 含义:等式右边是因变量y的函数,不含自变量t(与时间无关)。 这种方程用分离变量就可以解,但有时求解非常繁琐二,怎么在不解方程的前提下,知道解的性质?可以用几何法做””图:三、求的解的性质(方程右边是一次方程):当时,点为临界点; 根据上式,做“”图和“”图: 当时,递增,箭头朝正方向;当时,递减,箭头朝负方向; 在””图上画出解曲线:...原创 2018-10-10 21:51:39 · 1046 阅读 · 0 评论 -
第十讲 二阶齐次常系数线性ODE(续)
一,特征方程的解r是一对共轭复数: 通解: 因为是实数解,是复数,要使方程两边相等,必须满足以下条件: ,证明:如果,那么为实数 同理:如果,那么为实数将代入通解:(工程上的用法) 变回最初的形式: (利用逆向欧拉公式) ,二,逆向欧拉公式:三,应用:弹簧—质量—阻尼系统如图 o点为平衡位置 标准形式: 设阻尼常数,弹性常数,表示弹簧振荡的角...原创 2018-10-22 16:42:49 · 1333 阅读 · 0 评论 -
第十四讲 共振
一,共振的数学模型: 弹簧—质量—阻尼系统 如图 标准形式: 设阻尼常数,弹性常数,表示弹簧振荡的角速度, 原方程化为: 假设阻尼系数,方程右侧输入的驱动项,驱动角速度 (注:视频中的,这里用表示,以便区别第三节的阻尼角速度) 方程为: 方程左边换成线性算子式: 方程右边复数化:是的实部,将代替 方程化简为:,表示复数解, 因为 指数输入定理 取出实部: 幅度...原创 2018-10-30 20:27:56 · 1319 阅读 · 10 评论 -
第十一讲 二阶齐次线性ODE相关理论
一,二阶齐次线性ODE的标准形式: 二,通解: ,和线性无关,即:且三,问题1:为什么是方程的解?叠加原理:如果、是齐次线性ODE的解(不一定是二阶),那么和的线性组合也是方程的解 利用线性算子证明叠加原理:把标准形式化为: D为微分算子,D表示y被微分一次,表示y被微分两次 式子也可以表示为,但D和y不是乘积关系,而是D作用于y 为线性算子,...原创 2018-10-24 19:24:25 · 2393 阅读 · 0 评论 -
第十三讲 二阶非齐次常系数线性ODE的特解
一,二阶非齐次常系数线性ODE的标准形式:二,通解: 三,将方程化成特殊形式:设方程右边的输入项为“纯振荡”:,,表示复数 方程左边换成线性算子式: 四,代换法则: 证明: D表示对函数求导:, 五,指数输入定理(当时):的特解为,是常数 证明:将特解代入原方程,利用代换法则六,求特解例题1: 将复数化:是的虚部,将代替, 方程左边换成线性算子式:...原创 2018-10-28 19:37:17 · 2856 阅读 · 0 评论 -
第十二讲 二阶非齐次线性ODE解的结构
一,二阶非齐次线性ODE的标准形式: 表示输入、驱动 表示输出、响应二,通解: 叫补充解,是齐次方程的通解 (作为的相伴方程) 是非齐次方程的特解三,应用:弹簧—质量—阻尼系统(第九讲) 如图 在系统中,对小车施加额外的一个力 标准形式: 被动系统:当时,系统没有外力干涉,只是被动地对初始条件进行响应 受迫系统:当时,系统一直有外力干涉,强迫它运动 电...原创 2018-10-26 22:33:28 · 2761 阅读 · 0 评论 -
第十五讲 傅里叶级数引入
注:在学习这章之前建议看看《漫画傅里叶解析》和可汗学院的傅里叶级数课程,那里对傅里叶级数有很基础的讲解。一,二阶非齐次常系数线性ODE的标准形式: 二,将输入项变成傅里叶级数: 任何以为周期的周期函数f(t)都可以用傅里叶级数表示三,输入项和输出项(通解)的关系:输入(驱动)项f(t) 输出(响应)项y(t) ...原创 2018-10-31 20:28:41 · 593 阅读 · 0 评论 -
第十六讲 傅里叶级数拓展
一,推论: 一个函数不能有两个不同的傅里叶级数,因为傅里叶系数公式表明对应唯一的和。二,奇偶性(缩减计算):如果是偶函数,即,y轴对称,那么,,证明: 如果是偶函数,那么是偶函数, 因此,,因为是偶函数如果是奇函数,即,原点对称,那么,,证明:同上 如果是奇函数,那么也是偶函数(奇X奇=偶), 因此,,因为是奇函数三,傅里叶级数与泰勒级数的不同之...原创 2018-11-17 12:03:00 · 2990 阅读 · 0 评论 -
第十八讲 傅里叶变换
一,傅里叶级数的复数形式:一般形式:,周期, ,n为任意整数 ,n为任意整数利用逆向欧拉公式(第十讲第二节)展开: 原式: 第一项: 第三项:当时, 代入原式: 当时: 当时: 当时: 总结:,二,傅里叶变换:用表示周期为T的, 对于任意,其中和都是不变的 唯一改变的是 频谱如图(图中的和意思相同): 两个不同角速度之间的间距,如图(图中的和意思相...原创 2018-11-22 04:54:38 · 405 阅读 · 0 评论 -
第二十六讲 有特殊特征值的微分方程组
一,温度扩散问题:假设有三个房间,房间初始温度分别为:高、中、低,但经过一段时间后,三个房间互相交换热量,最终稳定在同一个温度上。假设房间温度分别为:X1,X2,X3X_{1},X_{2},X_{3}X1,X2,X3,如图:温度Xi(t)X_{i}(t)Xi(t)是时间的函数二,建立微分方程组:根据温度变化率,建立数学模型:X1′=a(X3−X1)+a(X2−X1){X_{1}}...原创 2019-01-30 18:03:38 · 1217 阅读 · 0 评论