多层注意力模型:Hierarchical Attention Networks for Document Classification

该博客介绍了一种层级注意力模型用于文本分类,通过结合双向RNN和注意力机制,解决了长序列处理中的信息丢失问题。在Yelp、IMDB等多个数据集上的实验表明,该模型相较于其他方法有显著提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、简介

文本分类问题一直是自然语言处理(NLP)中一个广受人们关注的问题。可能好多刚接触深度学习做NLP的项目就是使用循环神经网络(RNN)对IMDB影评进行分类。但使用循环神经网络时一般会遇到一个问题,那就是当所要处理的序列较长时,就会导致网络容易忘记之前的东西,这在机器翻译、对话系统中会经常出现,为解决这一问题,大佬们就根据心理学原理提出了“注意力”机制,使得网络工作过程中可以像人一样将注意力放在不同部位。那么对于文本分类能否使用“注意力”机制呢?答案是肯定的,这篇论文就针对文本分类问题提出了层级注意力模型结合双向RNN实现对文本的分类,其效果明显好于其他方法。

2、层级“注意力”网络

2.1 网络结构

层级“注意力”网络的网络结构如图1所示,网络可以被看作为两部分,第一部分为词“注意”部分,另一部分为句“注意”部分。整个网络通过将一个句子分割为几部分(例如可以用“,”讲一句话分为几个小句子),对于每部分,都使用双向RNN结合“注意力”机制将小句子映射为一个向量,然后对于映射得到的一组序列向量,我们再通过一层双向RNN结合“注意力”机制实现对文本的分类。


图1

2.2  层级“注意力”
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值