20240322-2-Catboost面试题

本文介绍了CatBoost,一种处理类别型特征的高效GBDT框架,其特点包括自动特征转换、排序提升减少偏差、对称树结构以降低过拟合。文章对比了CatBoost与XGBoost、LightGBM的区别,并讨论了其优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Catboost面试题

在这里插入图片描述

1. 简单介绍Catboost?

CatBoost是一种以对称决策树 为基学习器的GBDT框架,主要为例合理地处理类别型特征,CatBoost是由Categorical和Boosting组成。CatBoost还解决了梯度偏差以及预测偏移的问题,从而减少过拟合的发生,进而提高算法的准确性和泛化能力。

2. 相比于XGBoost、LightGBM,CatBoost的创新点有哪些?

  • 自动将类别型特征处理为数值型特征。
  • Catboost对类别特征进行组合,极大的丰富了特征维度。
  • 采用排序提升的方法对抗训练集中的噪声点,从而避免梯度估计的偏差,进而解决预测偏移的问题。
  • 采用了完全对称树作为基模型。

3. Catboost是如何处理类别特征的?

  • 基数比较低的类别型特征

    利用One-hot编码方法将特征转为数值型

  • 基数比较高的类别型特征

    • 首先会计算一些数据的statistics。计算某个category出现的频率,加上超参数,生成新的numerical
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

武昌库里写JAVA

您的鼓励将是我前进的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值