Soft-NMS原理、和NMS的区别

NMS:

《NMS:Efficient Non-Maximum Suppression》

非极大值抑制,即保留局部最大值而去除局部非最大值

过程:

假设对于某个类别C,假设当前有N个矩形框,这里假设6个,ABCDEFG

首先对这些矩形框按照概率降序排列,选中概率最大的框

对于剩下的框,依次与概率最大的框IOU,如果IOU大于某个阈值,则将这些框丢弃(置0),并标记保留最大概率框

完成了一次遍历后,留下了一部分框,再从剩下的框中选择概率最大的框,继续根据IOU进行筛选

重复过程,最终保留下了部分矩形框

代码

import numpy as np

def MNS(dets, thresh):

    x1 = dets[:, 0]

    y1 = dets[:, 1]

    x2 = dets[:, 2]

    y2 = dets[:, 3]

    scores = dets[:, 4]

    areas = (x2 - x1 + 1) * (y2 - y1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值